Prof. Dr. E. Görlich Dipl.-Math. I. Klöcker

2. Übung zur Approximationstheorie

Abgabe: Montag, 8. November 2004, 12 Uhr

Definition: Seien $x, h \in \mathbb{R}$ und f eine auf der Menge $U \subset \mathbb{R}$ definierte reellwertige Funktion. Für $n \in \mathbb{N}$ heißt $\Delta_h^n f(x)$, wobei

$$\Delta_h f(x) := \Delta_h^1 f(x) := f(x+h) - f(x) \qquad \text{falls } x, x+h \in U,$$

$$\Delta_h^n f(x) := \Delta_h^1 (\Delta_h^{n-1} f)(x) \qquad \text{für } n \ge 2, \text{ falls } x, x+h, \dots, x+nh \in U,$$

die *n-te Differenz* von f an der Stelle x mit Inkrement h. Zusätzlich setzen wir $\Delta_h^0 f(x) := f(x)$.

Aufgabe 1 (2 Punkte)

Zeigen Sie, dass für $n \in \mathbb{N}$ und $x, h \in \mathbb{R}$ mit $x + jh \in U$ für $0 \le j \le n$ gilt

$$\Delta_h^n f(x) = \sum_{j=0}^n (-1)^{n-j} \binom{n}{j} f(x+jh).$$

Satz (Jensen-Ungleichung)

Sei $I \subset \mathbb{R}$ ein Intervall und $\phi : I \to \mathbb{R}$ konvex. Sind dann $f, \phi \circ f \in L^1(a,b)$ mit $f([a,b]) \subset I$, dann gilt

$$\phi\left(\frac{1}{b-a}\int_a^b f(x)\,dx\right) \le \frac{1}{b-a}\int_a^b (\phi\circ f)(x)\,dx.$$

(s. Hewitt-Stromberg, Real and Abstract Analysis, p. 202).

Definition: Für ein endliches Intervall $[a,b] \subset \mathbb{R}$ bezeichne X[a,b] im Folgenden immer einen der Räume C[a,b] oder $L^p(a,b), 1 \le p < \infty$, versehen mit den entsprechenden kanonischen Normen.

Aufgabe 2 (3+2+4+2+4+2 Punkte)

Zu $f \in X[0,1]$ ist das n-te **Kantorovič-Polynom** $K_n f$, $n \in \mathbb{N}_0$, definiert durch

$$K_n f(x) := (n+1) \sum_{k=0}^n p_{n,k}(x) \int_{\frac{k}{n+1}}^{\frac{k+1}{n+1}} f(t) dt$$
 für $x \in [0,1]$,

wobei für $x \in [0,1]$ und $k,n \in \mathbb{Z}$ die Bernstein-Basispolynome $p_{n,k}$ gegeben sind durch

$$p_{n,k}(x) = \begin{cases} \binom{n}{k} x^k (1-x)^{n-k} & \text{, falls } 0 \le k \le n, \\ 0 & \text{, sonst.} \end{cases}$$

Zeigen Sie:

a) Es gilt:

(i)
$$\int_0^1 p_{n,k}(x) dx = \frac{1}{n+1}$$
 für $0 \le k \le n$,

(ii)
$$p'_{n,k} = n(p_{n-1,k-1} - p_{n-1,k}).$$

- b) $K_n f(x) = \frac{d}{dx} B_{n+1} F(x)$, wobei $F(x) = \int_0^x f(t) dt$ für $x \in [0, 1]$.
- c) Sei $\varphi(x) = x(1-x)$ für $x \in [0,1]$. Zeigen Sie:
 - (i) Für $f_0(x) = 1$ ist $K_n f_0(x) = 1$.
 - (ii) Für $g_x(u) = u x$ ist $K_n g_x(x) = \frac{\varphi'(x)}{2(n+1)}$.

(iii) Für
$$h_x(u) = (u - x)^2$$
 ist $K_n h_x(x) = \frac{\varphi(x)}{n+1} + \frac{1 - 6\varphi(x)}{3(n+1)^2}$.

d) Die Operatoren K_n bilden einen Approximationsprozess auf C[0,1], d. h.

$$\lim_{n \to \infty} ||K_n f - f||_{C[0,1]} = 0 \qquad \text{ für } f \in C[0,1].$$

e) Für $X = L^p$ sind die Operatoren K_n gleichmäßig beschränkt durch 1, d. h. es gilt

$$||K_n f||_{L^p(0,1)} \le ||f||_{L^p(0,1)}$$
 für $f \in L^p(0,1)$ und $n \in \mathbb{N}_0$.

f) Die Operatoren K_n bilden einen Approximationsprozess auf $L^p(0,1)$, d. h.

$$\lim_{n \to \infty} ||K_n f - f||_{L^p(0,1)} = 0 \qquad \text{für } f \in L^p(0,1).$$

Hinweis: Zum Beweis von e) verwenden Sie, dass die Funktion $\phi(x) := |x|^p$ für $p \ge 1$ konvex ist, und benutzen Sie die Jensen-Ungleichung.

Aufgabe 3 (8 Punkte)

Beweisen Sie den Satz von Bohman-Korovkin für $C_{2\pi}$:

Sei $(T_n)_{n\in\mathbb{N}_0}$ eine Folge positiver linearer Operatoren von $C_{2\pi}$ in sich. Dann sind äquivalent:

(i) $(T_n)_{n\in\mathbb{N}_0}$ ist ein Approximationsprozess auf $C_{2\pi}$, d. h. für jedes $f\in C_{2\pi}$ gilt

$$\lim_{n\to\infty} ||T_n f - f||_{C_{2\pi}} = 0.$$

(ii) Für die Funktionen $f_0(x) = 1$, $f_1(x) = \cos x$ und $f_2(x) = \sin x$ gilt

$$\lim_{n\to\infty} ||T_n f_0 - f_0||_{C_{2\pi}} = \lim_{n\to\infty} ||T_n f_1 - f_1||_{C_{2\pi}} = \lim_{n\to\infty} ||T_n f_2 - f_2||_{C_{2\pi}} = 0.$$

(iii) Für die Funktionen $f_0(x) = 1$, $\varphi_x(u) = \sin^2((u-x)/2)$ gilt

$$\lim_{n\to\infty} ||T_n f_0 - f_0||_{C_{2\pi}} = \lim_{n\to\infty} ||T_n(\varphi_x; x)||_{C_{2\pi}} = 0,$$

wobei $T_n(\varphi_x; x)$ die Anwendung von T_n auf $\varphi_x(u)$ als Funktion von u sei und dann die $C_{2\pi}$ -Norm bzgl. x betrachtet werde.

Aufgabe 4 (5+2+2 Punkte)

- a) Beweisen Sie Lemma 6 der Vorlesung und folgern Sie daraus die Eigenschaft (6) der B-Splines aus Lemma 5.
- b) Beweisen Sie die folgenden Eigenschaften des Stetigkeitsmoduls:
 - (i) $\omega(f, r\delta) \le r\omega(f, \delta)$ für $f \in C[a, b]$ und $r \in \mathbb{N}$,
 - (ii) $\omega(f, \alpha \delta) \le (\alpha + 1)\omega(f, \delta)$ für $f \in C[a, b]$ und $\alpha \in \mathbb{R}, \alpha > 0$.

Aufgabe 5 (2+1) Punkte)

Seien $a, b \in \mathbb{R}$ mit a < b.

a) Zeigen Sie für $1 \le p \le \infty$, dass $L^p(a,b) \subset L^1(a,b)$ gilt, und dass eine Konstante M>0 existiert, so dass

$$||f||_1 \le M||f||_p$$
 für $f \in L^p(a,b)$

gilt.

b) Zeigen Sie für $f \in L^p(a,b)$, $1 \le p < \infty$, dass

$$\lim_{h\to 0} \|\Delta_h f\|_p = 0$$

gilt.

Hinweis: Benutzen Sie das Analogon von Satz I.10 über die Dichtheit von C[a,b] in $L^p(a,b)$.

Aufgabe 6 (2+2 Punkte)

- a) Beweisen Sie den Eindeutigkeitssatz für Fourierkoeffizienten: Sei $f \in C_{2\pi}$ mit $f^{\wedge}(k) = 0$ für alle $k \in \mathbb{Z}$, dann ist $f \equiv 0$.
- b) Beweisen Sie das algebraische Analogon zum Eindeutigkeitssatz für Fourierkoeffizienten: Seien $a,b \in \mathbb{R}$ mit a < b und sei $f \in C[a,b]$. Gilt für die "algebraischen Momente"

$$\int_{a}^{b} f(x)x^{n}dx = 0 \qquad (n \in \mathbb{N}_{0}),$$

so ist $f \equiv 0$.

Hinweis: Zeigen Sie zunächst, dass $\int_a^b |f(x)|^2 dx = 0$ ist.