Prof. Dr. R. L. Stens, Tel.: 80-94532 Dipl.-Math. A. Haß, Tel.: 80-94317

8. Übung zur Fourier-Analysis I

(Abgabe: 12.12.2003 vor der Übung)

Aufgabe 1: Lösen Sie die folgenden linearen Differentialgleichungen mit Hilfe der Fourier-Analysis:

a)
$$y'(x) + 2y(x) = \cos 2x$$
,

6

b)
$$y''(x) + y'(x) + y = \sin 3x + \cos x$$
.

6

Hinweis: Bilden Sie unter der Annahme der Existenz einer Lösung y die Fourier-Koeffizienten beider Seiten der Dgl; so erhalten Sie für jedes $k \in \mathbb{Z}$ eine Gleichung für $y^{\hat{}}(k)$. Wenden Sie nach dem Lösen dieser Gleichungen die Umkehrtransformation an und verifizieren Sie das Ergebnis.

Aufgabe 2: Sei $X_{2\pi}$ einer der Räume $C_{2\pi}$ oder $L_{2\pi}^p$, $1 \leq p < \infty$, und $\{\chi_{\rho}\}_{{\rho} \in \mathbb{A}}$ ein positiver Kern. Zeigen Sie die Äquivalenz der folgenden Aussagen:

a)
$$\lim_{\rho \to \rho_0} ||I_{\rho}f - f||_{X_{2\pi}} = 0$$
 $(f \in X_{2\pi}),$

b)
$$\lim_{\rho \to \rho_0} \|I_{\rho}(\cos u; \cdot) - \cos(\cdot)\|_{X_{2\pi}} = \lim_{\rho \to \rho_0} \|I_{\rho}(\sin u; \cdot) - \sin(\cdot)\|_{X_{2\pi}} = 0,$$

c)
$$\lim_{\rho \to \rho_0} \chi_{\rho}(1) = 1$$
,

d)
$$\lim_{\rho \to \rho_0} I_{\rho}(\sin^2 \frac{u}{2}; 0) = 0$$
,

e)
$$\lim_{\rho \to \rho_0} \int_{\delta \le |u| \le \pi} \chi_{\rho}(u) du = 0$$
 $(0 < \delta < \pi)$.

8

Definition: Sei H ein Hilbert-Raum. Eine Folge $(g_k)_{k \in \mathbb{N}} \subset H$ heißt **Frame**, falls Konstanten A > 0 und $B < \infty$ existieren mit

$$A \|f\|^2 \le \sum_{k \in \mathbb{N}} |(f, g_k)|^2 \le B \|f\|^2 \qquad (f \in H).$$

Die zugehörige Transformation F von H in den Hilbert-Raum $l^2 \equiv l^2(\mathbb{N})$, definiert durch $(Ff)_k := (f, g_k)$ für $k \in \mathbb{N}$, $f \in H$, heißt **Frame-Operator**.

Aufgabe 3: Sei H ein Hilbert-Raum und $(g_k)_{k\in\mathbb{N}}$ ein Frame in H mit Konstanten $A \leq B$ und Frame-Operator F. Beweisen Sie:

a) F ist linear und beschränkt, d.h. $F \in [H, l^2]$.

1

b) Ist F^* der zu F duale Operator, dann gilt:

$$\sum_{k \in \mathbb{N}} |(f, g_k)|^2 = ||Ff||_{l^2}^2 = (F^*Ff, f) \qquad (f \in H).$$

Hinweis: Verwenden Sie, dass der duale Operator $F^*: l^2 \to H$ von F linear, beschränkt und durch $(F^*c, f) := (c, Ff)_{l^2}$ für $c \in l^2$, $f \in H$ wohldefiniert ist.

4

c) Die Folge $(\widetilde{g}_k)_{k\in\mathbb{N}}$ mit $\widetilde{g}_k := (F^*F)^{-1}g_k$ für $k \in \mathbb{N}$ ist ein Frame mit

$$B^{-1} \|f\|^2 \le \sum_{k \in \mathbb{N}} |(f, \widetilde{g}_k)|^2 \le A^{-1} \|f\|^2 \qquad (f \in H).$$

Hinweis: Benutzen Sie, dass der inverse Operator $S^{-1} \in [H]$ von $S := F^*F$ für jedes $f \in H$ den Ungleichungen $B^{-1} \|f\|^2 \le (S^{-1}f, f) \le A^{-1} \|f\|^2$ genügt.

4

d) Jedes $f \in H$ ist entwickelbar in seine Frame-Reihe vermöge

$$f = \sum_{k \in \mathbb{N}} (f, g_k) \ \widetilde{g}_k = \sum_{k \in \mathbb{N}} (f, \widetilde{g}_k) \ g_k.$$

2

Aufgabe 4: Zeigen Sie, dass zwischen den $L^p(\mathbb{R})$ -Räumen keine Inklusionen bestehen, d.h., für $1 \le p, q \le \infty$ mit $p \ne q$ gilt

$$L^p(\mathbb{R}) \not\subset L^q(\mathbb{R})$$
 und $L^q(\mathbb{R}) \not\subset L^p(\mathbb{R})$.

6

Aufgabe 5: Zeigen Sie, dass die Funktion

$$f(x) := \begin{cases} x/e, & 0 \le x \le e \\ 1/\log x, & x > e \\ -f(-x), & x < 0 \end{cases}$$

zwar zu $C_0(\mathbb{R})$ gehört, aber nicht Fourier-Transformierte einer $L^1(\mathbb{R})$ -Funktion ist (vgl. Sie auch mit Übung 2, Aufgabe 3).

Hinweis: Lit. A II 1 (Goldberg), p.8

10

Aufgabe 6:

a) Berechnen Sie die Fourier-Transformierte der charakteristischen Funktion $\kappa: \mathbb{R}^n \to \mathbb{R}$ mit

$$\kappa_{[a,b]}(x) := \begin{cases} 1, & a \le x \le b \\ 0, & \text{sonst} \end{cases}$$

für $a \leq b$. Dabei bedeutet $a \leq b$ für $a := (a_1, \ldots, a_n), b := (b_1, \ldots, b_n) \in \mathbb{R}^n$, dass $a_i \leq b_i$ für $i = 1, \ldots, n$ ist.

2

b) Folgern Sie, dass es Funktionen $f \in L^1(\mathbb{R})$ gibt mit $f \in L^1(\mathbb{R})$.

2

51