3

6

1

2

5

Prof. Dr. R. L. Stens, Tel.: 80-94532 Dipl.-Math. A. Haß, Tel.: 80-94317

11. Übung zur Fourier-Analysis I

(Abgabe: 16.01.2004 <u>vor</u> der Übung)

Aufgabe 1:

a) Zeigen Sie für den in Übung 9, Aufgabe 2b) eingeführten Cesàro-Faktor Θ^C :

$$[(\Theta^C)^{\hat{}}(\cdot)]^{\hat{}}(s) = 2\pi \Theta^C(s).$$

b) Zeigen Sie unter Verwendung von Übung 9, Aufgabe 2b) und Teil a), dass zu gegebenen reellen Zahlen a < b und $\varepsilon > 0$ eine Funktion $g \in L^1(\mathbb{R})$ existiert mit

$$g^{\hat{}}(t) = \begin{cases} 1 \ , & a \leq t \leq b \\ 0 \ , & t \leq a - \varepsilon \text{ oder } t \geq b + \varepsilon \\ \text{linear} \ , & \text{auf } [a - \varepsilon, a] \text{ und } [b, b + \varepsilon] \end{cases}.$$

Hinweis: Lit. A II 1 (Goldberg), pp. 21-24

Aufgabe 2:

- a) Seien $f,g\in L^1(\mathbb{R}^n)$ und $g\hat{\ }(v)=0$ für $|v|\geq 1$. Zeigen Sie, dass $(f*g)\hat{\ }(v)=0$ ist für $|v|\geq 1$ (vgl. Lemma 2.7 d)).
- b) Seien $f, g \in L^1(\mathbb{R}^n)$ und f(x) = 0 für $|x| \ge a$ und g(x) = 0 für $|x| \ge b$. Zeigen Sie, dass dann (f * g)(x) = 0 ist für $|x| \ge a + b$.
- c) Zeigen Sie, dass Funktionen $f,g\in L^1(\mathbb{R})$ existieren mit $f(x)\neq 0,\ g(x)\neq 0$ für alle $x\in\mathbb{R}$ und

$$(f*g)\hat{\ }(v)=0 \quad (v\in\mathbb{R}).$$

Hinweis: Betrachten Sie die Funktionen $f(x):=(\Theta^C)\hat{\ }(x)+(\Theta^C)\hat{\ }(x+\pi)$ und $g(x)=e^{-2ix}\,f(x).$

Aufgabe 3: Sei $(c_k)_{k\in\mathbb{N}}$ eine monoton fallende Folge nichtnegativer reeller Zahlen mit $\lim_{k\to\infty} c_k = 0$. Zeigen Sie

$$\sum_{k=1}^{\infty} \frac{c_k}{k} < \infty \iff \sum_{k=1}^{\infty} (-\Delta c_k) \log k < \infty.$$

Hinweis: Benutzen Sie Abel'sche partielle Summation und (mit Herleitung) die Abschätzung

$$\log m \le \sum_{j=1}^{m} \frac{1}{j} \le 2\log m \qquad (m \in \mathbb{N}, m \ge 3).$$

Aufgabe 4: Sei $(c_k)_{k\in\mathbb{Z}}$ eine ungerade (d.h. $c_k=-c_{-k}$) Folge von reellen Zahlen mit $c_1\geq c_2\geq \cdots \geq 0$ und $\lim_{|k|\to\infty}c_k=0$. Beweisen Sie mit Hilfe von Aufgabe 3: $\sum_{k=1}^{\infty}c_k\sin kx \text{ ist Fourier-Reihe einer Funktion }g\in L^1_{2\pi}\text{ genau dann, wenn}$

$$\sum_{k=1}^{\infty} (-\Delta c_k) \log k < \infty.$$

Hinweis: Vgl. Lit. A II 4 (Edwards I), pp. 115-116

Aufgabe 5: Beweisen Sie folgende Aussagen:

a)
$$\sum_{k=0}^{\infty} \frac{\cos kx}{\log k}$$
 ist die Fourier-Reihe einer Funktion aus $L_{2\pi}^1$.

b)
$$\sum_{k=2}^{\infty} \frac{\sin kx}{\log k}$$
 ist nicht die Fourier-Reihe einer Funktion aus $L_{2\pi}^1$.

Aufgabe 6: Sei $(c_k)_{k\in\mathbb{Z}}$ eine gerade, beschränkte Folge, so dass $(c_k)_{k\in\mathbb{N}_0}$ konvex ist, d.h., $\Delta^2 c_k \geq 0$ für $k \in \mathbb{N}_0$.

- a) Zeigen Sie:
 - (i) $\Delta c_k \leq 0$ $(k \in \mathbb{N}_0)$,
 - (ii) $\lim_{k\to\infty} k\Delta c_k = 0$,
 - (iii) $(c_k)_{k \in \mathbb{N}_0}$ ist quasikonvex.

b) Sei $(c_k)_{k\in\mathbb{N}_0}$ zusätzlich eine Nullfolge. Beweisen Sie, dass dann eine gerade, positive Funktion $g\in L^1_{2\pi}$ existiert mit $g^{\hat{}}(k)=c_k$ für alle $k\in\mathbb{Z}$.

6

7

10