Lehrstuhl A für Mathematik Prof. Dr. F. Fehér

2. Übung zur Theorie der Rieszräume

Abgabe Mo. 22.05.2006

Aufgabe 1: Sei $A = (a_{ij})$ eine (n, m)-Matrix, deren Elemente a_{ij} zu dem Verband L gehören. Man beweise

$$\bigvee_{j=1}^{n} \left(\bigwedge_{i=1}^{m} a_{ij} \right) \leq \bigwedge_{k=1}^{m} \left(\bigvee_{l=1}^{n} a_{kl} \right).$$

Aufgabe 2: Man beweise die folgenden Rechenregeln für Rieszräume:

(a)
$$f \vee g = \frac{1}{2}(f + g + |f - g|)$$

(b)
$$f \wedge g = \frac{1}{2}(f + g - |f - g|)$$

(c)
$$|f| = f \lor (-f) = f^+ + f^-$$

(d)
$$(f+g)^+ \le f^+ + g^+$$
; $(f+g)^- \le f^- + g^-$

(e)
$$|f| \vee |g| = \frac{1}{2}(|f+g| + |f-g|).$$

Aufgabe 3: Es sei

$$L := NBV[a, b] := \{f : [a, b] \longrightarrow \mathbb{R} / f \text{ ist v.b.V. auf } [a, b], f(a) = 0\}$$

versehen mit der punktweisen Addition und Skalarmultiplikation. Weiter sei

 $K := \{ f \in NBV[a, b] \mid f \text{ ist monoton fallend auf } [a, b] \}.$

- (a) Man führe auf L eine \leq -Relation ein, sodass $K = L^+$ gilt.
- (b) Man zeige, dass L ein Rieszraum ist.
- (c) Man bestimme f^+ und f^- speziell für $f(x) = \sin x$ falls $[a,b] = [0,2\pi]$ ist.

Aufgabe 4: Es sei $L := M(\Omega, \mathbb{A}, \mu)$ die Menge der μ -messbaren Funktionen auf Ω . Auf $M(\Omega, \mathbb{A}, \mu)$ sei eine Relation \sqsubseteq erklärt durch:

$$f\sqsubseteq g: \Longleftrightarrow f\leq g \quad \mu-fast \ \ddot{u}berall.$$

Unter Verwendung geeigneter Sätze der Maßtheorie zeige man, dass

$$(M(\Omega,\mathbb{A},\mu)\,;+\,,\alpha\cdot\sqsubseteq)$$

ein Rieszraum ist.