1. Übung zur Vorlesung Zahlbereichserweiterungen

Abgabe: Mittwoch, 20. April 2005, vor der Übung

Organisatorisches:

Die Übungen finden Sie auch im Internet unter:

http://www.matha.rwth-aachen.de/lehre/index.html

Kontakt: Sprechstunden vereinbaren Sie am besten nach der Vorlesung bzw. nach der Übung oder per E-Mail:

Stens@mathA.rwth-aachen.de

Michael.Hentschel@mathA.rwth-aachen.de

Die Büros finden Sie in der Kármánstraße 11, zwei Eingänge rechts neben der Fachschaft 1/1, im dritten Stock.

Scheinbedingungen: Die wöchentlich ausgegebenen Übungen sind bis zum Abgabetermin zu bearbeiten. Studierende des Diplomstudiengangs erhalten einen Übungsschein, falls 2/3 der Übungspunkte erreicht wurden. Weiterhin können Studierende des Lehramts einen Leistungsnachweis erwerben, indem <u>zusätzlich</u> zum Erreichen von 2/3 der Übungspunkte, eine mündliche Prüfung über den Stoff der Vorlesung und der Übungen erfolgreich abgelegt wird.

Vorlesungstermine:

Vorlesung	Dienstag 14:00 - 15:30 Uhr	Hörsaal IV	Beginn: 12.4.2005
Vorlesung	Donnerstag 11:45- 13:15 Uhr	Hörsaal III	Beginn: 14.4.2005
Übung	Mittwoch 14:00 - 15:30 Uhr	Hörsaal III	Beginn: 20.4.2005

Bitte beachten: Am Mittwoch den 13.4.2005 wird an Stelle der Übung die Vorlesung gehalten!

Aufgabe 1

Seien X, Y zwei nicht-leere Mengen und $T: X \to Y$ eine Abbildung. Zeigen Sie die Aquivalenz der folgenden Aussagen (Lemma 1.37):

(i) *T* ist injektiv,

(ii)
$$T(A \cap B) = T(A) \cap T(B)$$
, $(A, B \subset X)$,

(iii)
$$T^{-1}(T(A)) = A$$
, $(A \subset X)$,

(iv)
$$T(A \setminus B) = T(A) \setminus T(B)$$
, $(A, B \subset X)$.

(6 Punkte)

Aufgabe 2

Seien X, Y zwei nicht-leere Mengen und $f: X \to Y$ eine Abbildung. Zeigen Sie:

- 1. f ist genau dann injektiv, wenn eine Abbildung $g: Y \to X$ mit $g \circ f = \mathrm{id}_X$ existiert. In diesem Fall ist jedes derartige g surjektiv.
- 2. f ist genau dann surjektiv, wenn eine Abbildung $h: Y \to X$ mit $f \circ h = \mathrm{id}_Y$ existiert. In diesem Fall ist jedes derartige h injektiv.
- 3. Sind Abbildungen g, $h: Y \to X$ mit $g \circ f = \mathrm{id}_X$ und $f \circ h = \mathrm{id}_Y$ gegeben, so folgt g = h.

Man nennt g in a) ein *Linksinverses* und h in b) ein *Rechtsinverses* von f. (2+2+1 Punkte)

Aufgabe 3

Sei X nicht-leer; man nennt $R \subset X \times X$ eine \ddot{A} quivalenzrelation, wenn gilt:

- (Ä.1) *Reflexivität*: $(x, x) \in R$ für alle $x \in X$,
- (Ä.2) *Symmetrie*: Aus $(x,y) \in R$ folgt $(y,x) \in R$, $x,y \in X$,
- (Ä.3) *Transitivität*: Aus $(x,y) \in R$ und $(y,z) \in R$ folgt $(y,z) \in R$, $x,y,z \in X$.

Nun seien X, Y zwei nicht-leere Mengen und $f: X \to Y$ eine Abbildung. Wir nennen $x_1 \in X$ äquivalent zu $x_2 \in X$, wenn $f(x_1) = f(x_2)$; zeigen Sie dass, hierdurch eine Äquivalenzrelation auf X definiert wird. Zeigen Sie weiter, dass sich jede Äquivalenzrelation auf X in dieser Weise erzeugen läßt. (4 Punkte)

Aufgabe 4

Gegeben sei eine nicht-leere Menge M mit $A \subset M$. Untersuchen Sie die folgenden Abbildungen auf Injektivität, Surjektivität und Bijektivität:

- 1. $f_A: \mathfrak{P}(M) \to \mathfrak{P}(M), X \mapsto X \setminus A,$
- 2. $g_A : \mathfrak{P}(M) \to \mathfrak{P}(M), X \mapsto A\Delta X := (A \setminus X) \cup (X \setminus A).$

(2+3 Punkte)