Prof. Dr. E. Görlich,

Dipl.-Math. T. Heck, I. Klöcker

Musterlösung der 11. Übung zur Analysis IV

Aufgabe 2 (5 Punkte) Sei $G \subset \mathbb{C}$ ein Gebiet und $f : G \to \mathbb{C}$ holomorph auf G mit $f(z) \neq 0$ für alle $z \in G$. Zeigen Sie die Äquivalenz der folgenden Aussagen:

- (i) $\frac{f'}{f}$ hat eine Stammfunktion auf G.
- (ii) Es existiert ein holomorpher Logarithmus von f auf G.

Lösung

(i) \Rightarrow (ii) (vgl. Beweis zu XIX (4.6)) Sei $a \in G$ und g eine Stammfunktion von f'/f auf G mit g(a) = Log f(a). Definiere

$$h(z) := f(z)e^{-g(z)}.$$

Damit gilt:

$$h'(z) = f'(z)e^{-g(z)} - f(z)e^{-g(z)}g'(z) = 0$$
 für alle $z \in G$, denn $g'(z) = f'(z)/f(z)$.

Also ist $h \equiv c$ konstant auf G. Der Funktionswert berechnet sich zu

$$h(z) = h(a) = f(a)e^{-\operatorname{Log} f(a)} = 1$$
 für alle $z \in G$.

Damit gilt $\exp \circ g = f$, g ist also ein holomorpher Logarithmus von f auf G.

(ii) \Rightarrow (i) Sei g ein holomorpher Logarithmus von f, d. h.

$$f = \exp \circ g$$
.

Dann gilt für die Ableitung von f:

$$f' = (\exp \circ g) \cdot g' = f \cdot g'.$$

Daraus folgt die Behauptung, f'/f = g.

Aufgabe 3 (3 Punkte) Es sei $z = re^{i\theta} \neq 0$ mit $\theta \in (-\pi, \pi]$. Bestimmen Sie den Hauptwert von z^i . Welches ist der Hauptwert von i^i ?

Lösung Sei $z = re^{i\theta}$ mit $-\pi < \theta \le \pi$ und r > 0. Der Hauptwert von z^i ist definiert als

 $z^i := e^{i \text{Log} z}$ mit dem Hauptzweig Log des Logarithmus.

Also ist

$$z^{i} = e^{i(\log r + i\theta)} = e^{-\theta + i\log r}.$$

Für i^i gilt insbesondere mit r = 1 und $\theta = \frac{\pi}{2}$:

$$i^i = e^{-\frac{\pi}{2}}.$$

Aufgabe 4 (5 Punkte) Entwickeln Sie die Funktion $f(z) = \frac{1}{z^2 - 5z + 6}$ in eine Laurent-Reihe in den Kreisringen

a)
$$0 < |z| < 2$$
,

b)
$$2 < |z| < 3$$
,

c)
$$3 < |z|$$
.

Lösung Zunächst die Partialbruchzerlegung von *f*:

$$f(z) = \frac{1}{z^2 - 5z + 6} = \frac{1}{(z - 2)(z - 3)} = \frac{-(z - 3) + (z - 2)}{(z - 2)(z - 3)} = \frac{1}{z - 3} - \frac{1}{z - 2} = \frac{1}{2 - z} - \frac{1}{3 - z}.$$

Für $z_0 \in \mathbb{C}$ gilt (geometrische Reihe):

$$\frac{1}{z_0 - z} = \begin{cases} \frac{1}{z_0} \frac{1}{1 - \frac{z}{z_0}} = \frac{1}{z_0} \sum_{n=0}^{\infty} \left(\frac{z}{z_0}\right)^n, & \text{falls } |z| < |z_0|, \\ -\frac{1}{z} \frac{1}{1 - \frac{z_0}{z}} = -\frac{1}{z} \sum_{n=0}^{\infty} \left(\frac{z_0}{z}\right)^n, & \text{falls } |z| > |z_0|. \end{cases}$$

Damit folgt:

a)

$$f(z) = \frac{1}{2} \sum_{n=0}^{\infty} \left(\frac{z}{2}\right)^n - \frac{1}{3} \sum_{n=0}^{\infty} \left(\frac{z}{3}\right)^n = \sum_{n=0}^{\infty} \left(2^{-n-1} - 3^{-n-1}\right) z^n$$

im Fall 0 < |z| < 2.

b)

$$f(z) = -\frac{1}{z} \sum_{n=0}^{\infty} \left(\frac{2}{z}\right)^n - \frac{1}{3} \sum_{n=0}^{\infty} \left(\frac{z}{3}\right)^n = -\frac{1}{z} \sum_{n=-\infty}^{0} \left(\frac{z}{2}\right)^n - \sum_{n=0}^{\infty} 3^{-n-1} z^n$$
$$= -\sum_{n=-\infty}^{-1} 2^{-n-1} z^n - \sum_{n=0}^{\infty} 3^{-n-1} z^n = \sum_{n=-\infty}^{\infty} a_n z^n$$

mit

$$a_n := \begin{cases} -2^{-n-1}, & n \le -1\\ 3^{-n-1}, & n \ge 0 \end{cases}$$

für 2 < |z| < 3.

c)

$$f(z) = -\frac{1}{z} \sum_{n=0}^{\infty} \left(\frac{2}{z}\right)^n + \frac{1}{z} \sum_{n=0}^{\infty} \left(\frac{3}{z}\right)^n = \sum_{n=1}^{\infty} \left(3^{n-1} - 2^{n-1}\right) z^{-n}$$

für |z| > 3.