Prof. Dr. E. Görlich,

Dipl.-Math. T. Heck, I. Klöcker

8. Übung zur Analysis IV

Abgabe: Freitag, 27. Juni 2003, bis 12.00 Uhr im Kasten vor Raum 155, Hauptgebäude

Aufgabe 1 (2+4 Punkte)

- a) Bestimmen Sie für alle $w \in \mathbb{C}$ die w-Stellen mit Vielfachheit von Log : $\mathbb{C}_- \to \mathbb{C}$.
- b) Sei $n \in \mathbb{N}$ und sei $f_n : D_n \to \mathbb{C}$ gegeben durch

$$f_n(z) = \left(\frac{z\cos z}{\sinh z}\right)^n \frac{1 - \cos iz}{e^z - 1},$$

wobei D_n der maximale Definitionsbereich von f_n sei. Bestimmen Sie die größte Menge \hat{D}_n auf die f_n holomorph fortsetzbar ist und bestimmen Sie die Nullstellen und ihre Ordnung der holomorphen Fortsetzungen $\hat{f}_n : \hat{D}_n \to \mathbb{C}$ von f_n auf \hat{D}_n .

Aufgabe 2 (4+2+2 Punkte)

a) Sei $f : \overline{K_1(0)} \to \mathbb{C}$ stetig und auf $K_1(0)$ holomorph. Weiter sei

$$f(\frac{1}{n}) = \frac{1}{n^2} - \frac{3}{n} + 2$$
 für alle $n \in \mathbb{N}$.

Bestimmen Sie das Maximum von |f| auf $\overline{K_1(0)}$.

b) Finden Sie alle ganzen Funktionen $f: \mathbb{C} \to \mathbb{C}$ mit

$$f(2-i)=4i \quad {\rm und} \quad |f(z)| \leq e^2 \quad {\rm für \ alle} \ z \in \mathbb{C} \ .$$

c) Finden Sie alle Funktionen, die auf einem Gebiet $G \supset [0,1]$ holomorph sind und für die

$$f(\frac{1}{n}) = (-1)^n \frac{1}{n}$$

für alle $n \in \mathbb{N}$ gilt.

Aufgabe 3 (4 Punkte)

Sei $f : \overline{K_1(0)} \to \mathbb{C}$ stetig, nicht konstant und auf $K_1(0)$ holomorph. Zeigen Sie, dass f mindestens eine Nullstelle in $K_1(0)$ besitzt, falls |f| konstant auf $\partial K_1(0)$ ist.

Aufgabe 4 (3 Punkte)

Sei $f: \mathbb{C} \to \mathbb{C}$ eine ganze Funktion mit

$$\lim_{|z|\to\infty}\frac{f(z)}{z}=0.$$

Zeigen Sie, dass f konstant ist.

Aufgabe 5 (6 Punkte)

Sei $(f_n)_{n\geq 1}$ eine Folge auf $\overline{K_1(0)}$ stetiger und auf $K_1(0)$ holomorpher Funktionen. Zeigen Sie: Ist $(f_n)_{n\geq 1}$ gleichmäßig konvergent auf $\partial K_1(0)$, so existiert eine auf $\overline{K_1(0)}$ stetige und auf $K_1(0)$ holomorphe Funktion mit

$$\lim_{n\to\infty} f_n(z) = f(z) \quad \text{für alle } z \in \overline{K_1(0)}.$$