12. Übung zur Analysis I

Abgabe: Freitag, 14.1.2000, 12.00 Uhr

Organisatorisches: Bitte beachten Sie:

- Am Montag, 10.1.2000, findet um 11.45 Uhr im Hörsaal V die Semesteraussprache für das erste Semester statt.
- Die Probeklausur am Freitag, 7.1.2000 (um 14.30 Uhr im Hörsaal Fo 1) dauert zwei Stunden. Mitzubringen ist nur (dokumentenechtes) Schreibgerät. Es sind keine Hilfsmittel zugelassen.

Aufgabe 1: (3 Punkte) Bestimmen Sie die Konvergenzradien der folgenden Potenzreihen:

$$\sum_{n=0}^{\infty} a^{n!} z^n \quad \text{für } 0 \neq a \in \mathbb{R}, \qquad \sum_{n=0}^{\infty} (-1)^n \frac{1}{2^{n+1}} z^n, \qquad \sum_{n=1}^{\infty} (1 + \frac{1}{n})^{(n^2)} z^n.$$

Aufgabe 2 (4 Punkte) (1) Beweisen Sie: Für |x| < 1 ist $\sum_{n=0}^{\infty} (-1)^n x^{2n} = \frac{1}{1+x^2}$.

(2) Für $n \in \mathbb{N}$ sei $r_n = \#\{(a,b) \in \mathbb{N} \times \mathbb{N} | a^2 + b^2 = n\}$. Bestimmen Sie den Konvergenzradius R der Reihe $f(z) := \sum_{n=1}^{\infty} z^{(n^2)}$ und zeigen Sie $f(z)^2 = \sum_{n=1}^{\infty} r_n z^n$ für $z \in K_R(0)$.

Aufgabe 3: (4 Punkte) (1) Sei $\sum_{k=0}^{\infty} a_k x^k$ eine Potenzreihe mit Konvergenzradius $R \in (0, \infty)$. Bestimmen Sie die Konvergenzradien der Potenzreihen

$$\sum_{k=0}^{\infty} a_k x^{nk} \quad \text{ für } n \in \mathbb{N}, \qquad \sum_{k=0}^{\infty} a_k x^{(k^2)} \qquad \text{ und } \qquad \sum_{k=0}^{\infty} \frac{a_k}{k!} x^k.$$

(2) Seien $0 \neq p$, q Polynome und $n_0 \in \mathbb{N}$, so dass alle reellen Nullstellen von q in $(-n_0, n_0)$ liegen. Zeigen Sie, dass die Potenzreihe $\sum_{n=n_0}^{\infty} \frac{p(n)}{q(n)} x^n$ den Konvergenzradius 1 hat.

Aufgabe 4 (4 Punkte) Sei $f(z) = \sum_{n=0}^{\infty} a_n (z-z_0)^n$ eine komplexe Potenzreihe mit Entwicklungspunkt z_0 und Konvergenzradius R > 0. Dann existiert zu jedem $z_1 \in K_R(z_0)$ eine Potenzreihe $g(z) = \sum_{n=0}^{\infty} b_n (z-z_1)^n$ mit Entwicklungspunkt z_1 und Konvergenzradius $\geq r := R - |z_1 - z_0| > 0$, so dass f(z) = g(z) für alle $z \in K_r(z_1)$.

Aufgabe 5 (*): Sei I eine Menge. Eine Familie $(a_j)_{j\in I}$ komplexer Zahlen heißt <u>summierbar</u>, wenn ein $\alpha \in \mathbb{C}$ existiert, so dass zu jedem $\varepsilon > 0$ eine endliche Menge $E_0 \subset I$ existiert, so dass für jede endliche Menge E mit $E_0 \subset E \subset I$ gilt $\left|\alpha - \sum_{j \in E} a_j\right| < \varepsilon$. Zeigen Sie:

- (1) Ist $(a_j)_{j\in I}$ summierbar, so ist α eindeutig bestimmt. Man nennt α die <u>Summe</u> von $(a_j)_{j\in I}$.
- (2) $((m!n!)^{(n+1)})_{(m,n)\in\mathbb{N}_0\times\mathbb{N}_0}$ ist summierbar mit Summe e^2 .
- (3) $(a_j)_{j\in I}$ ist summierbar genau dann, wenn $(|a_j|)_{j\in I}$ summierbar ist.
- (4) Ist $(a_j)_{j\in I}$ summierbar, so ist $\{j\in I\mid a_j\neq 0\}$ abzählbar.