9. Übung zur Analysis I

Abgabe: Freitag, 10.12.1999, 12.00 Uhr

Aufgabe 1 (4 Punkte) Bestimmen Sie die Häufungspunkte der folgenden Teilmengen von ℝ:

- $(1) \quad [0;1) \cap \mathbb{Q},$
- (2) $\left\{ (-1)^n \left(1 + \frac{1}{n^2} \right) \middle| n \in \mathbb{N} \right\},$
- (3) $\left\{ \frac{1}{n} + \frac{1}{m} \middle| m, n \in \mathbb{N} \right\}.$

Aufgabe 2 (4 Punkte) (1) Zeigen Sie: Jede offene Menge $M \subset \mathbb{R}$ ist abzählbare Vereinigung offener Intervalle.

- (2) Ist jede abgeschlossene Menge $M \subset \mathbb{R}$ abzählbare Vereinigung abgeschlossener Intervalle?
- (3) Für $M \subset \mathbb{R}$ sei $H(M) \subset \mathbb{R}$ die Menge der Häufungspunkte von M. Zeigen Sie für $M, N \subset \mathbb{R}$: (a) $M \cup H(M)$ ist abgeschlossen,
 - (b) $H(M) \cup H(N) = H(M \cup N)$.

Aufgabe 3 (4 Punkte) Für $a \in \mathbb{C}$, $r \geq 0$ sei $B_r(a) = \{z \in \mathbb{C} | |z-a| \leq r\}$. Seien nun $(a_n)_{n\geq 1}$ eine Folge in \mathbb{C} , $(r_n)_{n\geq 1}$ eine reelle Nullfolge mit $r_n > 0$ und $B_{r_{n+1}}(a_{n+1}) \subset B_{r_n}(a_n)$ für alle $n \in \mathbb{N}$.

- (1) Zeigen Sie: Es gibt genau ein $z \in \mathbb{C}$ mit $z \in \bigcap_{n \in \mathbb{N}} B_{r_n}(a_n)$. Für dieses z gilt $\lim_{n \to \infty} a_n = z$.
- (2) Bleibt die Aussage in (1) richtig, wenn man die abgeschlossenen Kugeln $B_{r_n}(a_n)$ durch die offenen Kugeln $U_{r_n}(a_n)$ ersetzt?

Aufgabe 4 (4 Punkte) Für jedes $z \in \mathbb{C}$ wird durch

$$a_{z,1} := 0$$
 und $a_{z,n+1} := (a_{z,n})^2 + z$ für alle $n \in \mathbb{N}$

rekursiv eine Folge $(a_{z,n})_{n>1}$ in $\mathbb C$ definiert. Sei

$$M := \{ z \in \mathbb{C} \mid \text{ die Folge } (|a_{z,n}|)_{n \geq 1} \text{ ist beschränkt} \}.$$

- (1) Zeigen Sie: $U_{1/4}(0) \subset M$ und $M \subset U_{2+\varepsilon}(0)$ für alle $\varepsilon > 0$.
- (2) Bestimmen Sie inf $\{r \in (0,\infty) \mid M \subset U_r(0)\}$ und $\sup\{r \in (0,\infty) \mid U_r(0) \subset M\}$.