Prof. Dr. E. Görlich,

Dipl.-Math. T. Heck, I. Klöcker

12. Übung zur Analysis III

Abgabe: Donnerstag, 23. Januar 2003, bis 12.00 Uhr im Kasten vor Raum 155, Hauptgebäude

Hinweis: 2. Klausur Aufgrund von Überschneidungen mit anderen Klausuren findet die 2. Klausur zur Analysis III nicht wie vorgesehen am 18. Februar, sondern am 24. Februar statt, und zwar um 17:15 Uhr.

Aufgabe 1 (4 Punkte) Die Funktionenfolge $(f_k)_{k>1}$, $f_k : \mathbb{R} \to \mathbb{R}$, sei gegeben durch

$$f_k(x) = \chi_{[k,k+1]}(x).$$

Zeigen Sie, dass $(f_k)_k$ punktweise auf \mathbb{R} konvergiert und dass für $0 < \eta < 1$ gilt

$$\lim_{k\to\infty}\lambda(\{x\in\mathbb{R};|f_k(x)|\geq\eta\})=1.$$

Warum ist dies kein Widerspruch zu Übung 10, Aufgabe 1?

Aufgabe 2 (4 Punkte) Geben Sie ein Beispiel für eine Folge $(f_k)_{k\geq 1}$ Lebesgue-integrierbarer Funktionen an, die dem Maße nach gegen die Nullfunktion streben, die aber keine Lebesgue-integrierbare Majorante besitzen. (Die Zahlenfolge $(\int_M f_k d\lambda)_{k\geq 1}$ kann divergent sein.)

Aufgabe 3 (3+2+2 Punkte) Gegeben sei die Funktionenfolge $(f_k)_{k\in\mathbb{N}}$ mit $f_k:[-1,1]\to\mathbb{R}$ durch

$$f_k(x) = \begin{cases} 1, & x = -1, x = 1, \\ \frac{1}{k}(1 - |x|)^k, & x \in (-1, 1) \end{cases}$$
 für $k \in \mathbb{N}$.

a) Zeigen Sie mittels des Satzes über die majorisierte Konvergenz:

$$\lim_{k\to\infty}\int_{[-1,1]}f_k\,d\lambda=0.$$

- b) Überprüfen Sie das Ergebnis aus a) durch explizite Berechnung von $\int_{[-1,1]} f_k d\lambda$.
- c) Kann zur Begründung der Aussage in a) auch der Satz über die monotone Konvergenz verwendet werden?

Aufgabe 4 (6 Punkte) Berechnen Sie das Lebesgue-Integral der folgenden Funktion mit Hilfe der Definition (XIV (1.6)), falls es existiert:

Sei $M = \{(x,y) \in \mathbb{R}^2; 0 < x^2 + y^2 \le 1\}$ und $f: M \to \mathbb{R}$ erklärt durch

$$f(x,y) = \frac{1}{\sqrt{x^2 + y^2}}.$$

Hinweise (nicht zu beweisen):

a) Das Volumen eines Kreises im \mathbb{R}^2 ist gleich dem Produkt von π und dem Radius zum Quadrat.

b)

$$\frac{1}{k+1} < \sum_{j=k}^{\infty} \frac{1}{(j+1)^2} < \frac{1}{k}.$$

Aufgabe 5 (5 Punkte) Bestimmen Sie, ob die folgende numerische Funktion quasi-integrierbar ist und berechnen Sie gegebenenfalls den Wert des Integrals:

$$f:[0,1]\to\mathbb{R}$$
 mit

$$\left(\frac{(-1)^k}{2}, x \in \left[\frac{1}{2}, \frac{1}{2}\right] \setminus \mathbb{O}, k \in \mathbb{N}\right)$$