13. Übung zur Höheren Funktionentheorie

Abgabe: Montag, 28.01.2002, bis 11.00 Uhr

Aufgabe 1 (**Dirichlet-Reihen I**)(6 Punkte):

- a) Man gebe eine Dirichletreihe mit $\sigma_b = 0$ und $\sigma_a = \frac{1}{3}$ an.
- b) Geben Sie für die folgenden Funktionen

$$f(n) = \begin{cases} 12 & \text{falls } 13 | n, \\ -1 & \text{sonst;} \end{cases} \text{ bzw. } f(n) = \sigma_{\alpha}(n) \text{ mit } \alpha > 1$$

die Konvergenzabzissen σ_a und σ_b der zugehörigen Dirichlet-Reihen $D_f(s)$ an.

Aufgabe 2 (Dirichlet-Reihen II)(6 Punkte):

Bestimmen Sie alle $s \in \mathbb{C}$, für die die folgenden Dirichlet-Reihen absolut konvergieren.

$$\sum_{n=2}^{\infty} \frac{1}{\log^2 n} n^{-s}, \quad \sum_{n=0}^{\infty} 2^{-ns}, \quad \sum_{n=1}^{\infty} 2^{-n} n^{-s}.$$

Bemerkung: Man überlege sich bei b), dass es sich wirklich um eine Dirichletreihe wie in der Vorlesung handelt.

Aufgabe 3* (**zahlentheoretische Funktionen**)(10* Punkte):

Sei $\mathcal{A} = \{f : \mathbb{N} \to \mathbb{C}, f \text{ Abbildung}\}$ die Menge der zahlentheoretischen Funktionen. $f \in \mathcal{A}$ heisst multiplikativ, wenn $f \not\equiv 0$ und f(mn) = f(m)f(n) für alle teilerfremden $m, n \in \mathbb{N}$.

- a) (A, +, *) ist eine kommutative und assoziative \mathbb{C} -Algebra mit Einselement (welches?) und ohne Nullteiler.
- b) f ist genau dann eine Einheit des Ringes $(\mathcal{A},+,*)$, wenn $f(1)\neq 0$.
- c) Die Menge der multiplikativen zahlentheoretischen Funktionen ist eine Untergruppe der Einheitengruppe von $(\mathcal{A}, +, *)$.
- d) Aus den vorherigen Ergebnissen (also ohne Vorlesung) folgere man, dass die Möbiussche μ -Funktion, die Eulersche ϕ -Funktion und die Teilersummen σ_{α} , $\alpha \in \mathbb{C}$ multiplikativ sind.

Aufgabe 4 (**Liouvillesche Funktion**)(8 Punkte):

Die durch $\lambda(1) = 1$ und $\lambda(n) = (-1)^{\alpha_1 + \ldots + \alpha_r}$ für $1 < n = p_1^{\alpha_1} \cdot \ldots \cdot p_r^{\alpha_r}$ definierte Funktion $\lambda \in \mathcal{A}$ heißt LIOUVILLEsche Funktion. Man zeige:

- a) λ ist multiplikativ mit $\lambda^{-1} = |\mu| = \mu^2$.
- b)

$$\sum_{d|n} \lambda(d) = \begin{cases} 1, & n = m^2 \text{ für } \text{ein } m \in \mathbb{N} \\ 0, & \text{sonst} \end{cases}.$$

c) Für alle $s \in \mathbb{C}$ mit Re(s) > 0 gilt

$$\sum_{n=1}^{\infty} \lambda(n) n^{-s} = \frac{\zeta(2s)}{\zeta(s)}.$$