Prof. Dr. E. Görlich,

Dipl.-Math. T. Heck, I. Klöcker

14. Übung zur Analysis I

Abgabe: Montag, 4. Februar 2002, bis 12 Uhr im Kasten vor Raum 155, Hauptgebäude

Aufgabe 1 (2+3+2 Punkte) Sei D = (a,b) mit a < b ein offenes Intervall in \mathbb{R} ($a = -\infty$ und $b = \infty$ zugelassen). Sei $f : D \to \mathbb{R}$ eine stetige Funktion. Zeigen Sie:

- a) Ist f gleichmäßig stetig und $(x_n)_{n\geq 1}$ eine Cauchy-Folge in D, so ist auch $(f(x_n))_{n\geq 1}$ eine Cauchy-Folge.
- b) Wenn die Grenzwerte $\lim_{x\downarrow a} f(x)$ (bzw. $\lim_{x\to -\infty} f(x)$) und $\lim_{x\uparrow b} f(x)$ (bzw. $\lim_{x\to \infty} f(x)$) existieren, so ist f gleichmäßig stetig.
- c) Im Fall $-\infty < a < b < \infty$ gilt in b) auch die Umkehrung.

Aufgabe 2 (2+3 Punkte) Zeigen Sie:

- a) Für $x \in \mathbb{R}$ ist $1 + x \le \exp(x)$.
- b) Folgern Sie aus a) und der Funktionalgleichung des Logarithmus:

$$n(1-\frac{1}{\sqrt[n]{x}}) \le \log(x) \le n(\sqrt[n]{x}-1)$$
 für $x \in (0,\infty)$ und $n \in \mathbb{N}$.

Aufgabe 3 (5 Punkte) Sei A eine beschränkte Teilmenge von \mathbb{R} und $f:A\to\mathbb{R}$ gleichmäßig stetig. Zeigen Sie, dass dann f(A) beschränkt ist.

Aufgabe 4 (3 Punkte) Sei f auf dem Intervall [a,b] mit a < b stetig und gelte $f([a,b]) \subset [a,b]$. Zeigen Sie: Es existiert mindestens ein $\xi \in [a,b]$ mit $f(\xi) = \xi$.

Aufgabe 5 (2+2 Punkte)

- a) Zeigen Sie, dass die Gleichung $\exp(1/x) = x$ mindestens eine Lösung in $\mathbb{R} \setminus \{0\}$ hat.
- b) Zeigen Sie, dass die Gleichung $4\cos(x) = x$ mindestens zwei verschiedene Lösungen in \mathbb{R} hat.

Aufgabe 6 (1+2+2 Punkte) Zeigen Sie:

a) Für $x, y, x + y \in \mathbb{R} \setminus \{(k + \frac{1}{2})\pi; k \in \mathbb{Z}\}$ gilt

$$\tan(x+y) = \frac{\tan(x) + \tan(y)}{1 - \tan(x)\tan(y)}.$$

- b) Die Funktion $\tanh : \mathbb{R} \to (-1,1), x \mapsto \frac{\sinh(x)}{\cosh(x)}$ ist streng monoton und bijektiv.
- c) Für die Umkehrfunktion artanh von tanh gilt für $x \in (-1,1)$:

$$\operatorname{artanh}(x) = \frac{1}{2} \log \left(\frac{1+x}{1-x} \right).$$

Bestimmen Sie analoge Darstellungen von arcosh und arsinh auf den jeweiligen Definitionsbereichen (vgl. Übung 13, Aufgabe 1).