Prof. Dr. E. Görlich,

Dipl.-Math. T. Heck, I. Klöcker

7. Übung zur Analysis I

Abgabe: Montag, 3.12.2001, bis 12 Uhr im Kasten vor Raum 155, Hauptgebäude

Aufgabe 1 (2+2+3+2 Punkte) Bestimmen Sie folgende Grenzwerte:

a)
$$\lim_{n\to\infty} \frac{7n^2+5}{13n^2+n-2}$$

b)
$$\lim_{n \to \infty} \left(\sqrt{4n^2 + 9n + 1} - 2n \right)$$

c)
$$\lim_{n\to\infty} \left(1-\frac{1}{n}\right)^n$$
 und $\lim_{n\to\infty} \left(1-\frac{1}{n^2}\right)^n$

d)
$$\lim_{n\to\infty} \frac{a^{2n}-1}{a^{2n}+1}$$
 für $a\in\mathbb{R}$

Aufgabe 2 (5 Punkte) Sei $(x_n)_{n\geq 1}$ eine reelle Folge mit $\liminf_{n\to\infty} x_n \in \mathbb{R}$. Zeigen Sie:

$$\liminf_{n\to\infty} x_n = \lim_{n\to\infty} (\inf\{x_k; k \ge n\})$$

(Analog kann man zeigen: $\limsup_{n\to\infty} x_n = \lim_{n\to\infty} (\sup\{x_k; k \ge n\}).$)

Aufgabe 3 (5 Punkte) Sei $(a_n)_{n\geq 1}$ eine Folge reeller Zahlen mit $a_n\neq 0$ für alle $n\in\mathbb{N}$. Beweisen Sie:

Aus
$$\limsup_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| < 1$$
 folgt $\lim_{n\to\infty} a_n = 0$.

Aufgabe 4 (5 Punkte) $(a_n)_{n\geq 1}$, $(b_n)_{n\geq 1}$ seien beschränkte reelle Folgen. Zeigen Sie:

$$\liminf_{n\to\infty}a_n+\liminf_{n\to\infty}b_n\leq \liminf_{n\to\infty}(a_n+b_n)\leq \min\{\liminf_{n\to\infty}a_n+\limsup_{n\to\infty}b_n,\limsup_{n\to\infty}a_n+\liminf_{n\to\infty}b_n\}.$$

Geben Sie ein Beispiel an, in dem

$$\liminf_{n\to\infty} a_n + \liminf_{n\to\infty} b_n < \liminf_{n\to\infty} (a_n + b_n)$$

gilt.

Aufgabe 5 (7 Punkte) Untersuchen Sie, ob die durch

$$a_1 = 1, \ a_{n+1} = \sqrt{1 + \frac{1}{3}a_n^2} \quad (n \in \mathbb{N}) \quad \text{und} \quad b_1 = 0, \ b_{n+1} = \frac{1}{4 - 3b_n} \quad (n \in \mathbb{N})$$

rekursiv definierten Folgen $(a_n)_{n\geq 1}$ und $(b_n)_{n\geq 1}$ wohldefiniert sind und konvergieren. Bestimmen Sie gegebenenfalls ihre Grenzwerte.