8. Übung zur Höheren Funktionentheorie II

Abgabe: Montag, 1.07.2002, 12.00 Uhr

Aufgabe 1 (Ordnungen)(4 Punkte):

Für $M \in \Gamma$ gilt:

- (i) ord M = 3 genau dann, wenn Spur M = -1,
- (ii) ord M = 4 genau dann, wenn Spur M = 0,
- (iii) ord M = 6 genau dann, wenn Spur M = 1.

Aufgabe 2 (**Die Kongruenzgruppe** $\Gamma_1[n]$) (4 Punkte):

Sei

$$\Gamma_1[n] := \left\{ M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}; a \equiv d \equiv 1 \mod n, c \equiv \mod n \right\}.$$

- a) Man zeige, dass $\Gamma_1[n]$ ist eine Kongruenzuntergruppe, die für n > 1 kein Normalteiler in Γ ist. Man bestimme die Stufe von $\Gamma_1[n]$.
- b) Man bestimme $[\Gamma : \Gamma_1[n]], [\Gamma_1[n] : \Gamma_0[n]]$ und $|\operatorname{GL}_2(\mathbb{Z}/n\mathbb{Z})|$.
- c) Man zeige, dass $\Gamma[n]$ in $GL_2(\mathbb{Q})$ und in $SL_2(\mathbb{R})$ konjugiert zu einer Untergruppe von $\Gamma_1[n^2]$ ist.

Aufgabe 3 (Bestimmung der Gruppen der Stufe 3)(6+4* Punkte):

Für eine Untergruppe Λ von Γ sei $\overline{\Lambda} := \Lambda \cup (-E)\Lambda$.

- a) Man gebe eine Transversale von $\overline{\Gamma[3]}$ in Γ an, also ein Repräsentantensystem von den Nebenklassen.
- b) Man zeige:

$$\Gamma/\overline{\Gamma[3]} \cong A_4.$$

- c) Man gebe einen Fundamentalbereich für $\Gamma[3]$ an und skizziere den Fundamentalbereich. Es ist nicht nötig, die Randkurven zu berechnen, wohl aber die Eckpunkte.
- d) Man bestimme explizit alle Untergruppen von Γ , die zwischen $\overline{\Gamma[3]}$ und Γ liegen. Welche Stufen habe diese Gruppen jeweils?
- e) Man bestimme alle Gruppen der Stufe 3.
- f) Man bestimme ein Repräsentantensystem der inäquivalenten Spitzen von $\Gamma[3]$.

Aufgabe 4 (Fundamentalbereiche und Kongruenzgruppen) (6 Punkte):

a) Sei $M \in \Gamma$, Λ eine Untergruppe von Γ und $\Lambda^* = M\Lambda M^{-1}$. Ist \mathcal{F} ein Fundamentalbereich von Λ , so ist $M\mathcal{F}$ ein Fundamentalbereich von Λ^* .

- b) Sei \mathcal{F} ein Fundamentalbereich von $\Gamma[n]$, $n \in \mathbb{N}$ und $M \in \Gamma$. Dann ist auch $M\mathcal{F}$ ein Fundamentalbereich von $\Gamma[n]$.
- c) Der Durchschnitt von endlich vielen Kongruenzgruppen ist eine Kongruenzgruppe.
- d) Der Durchschnitt aller Kongruenzgruppen ist $\{E\}$.
- e) Für n > 2 ist $\{E\}$ die einzige endliche Untergruppe von $\Gamma[n]$.