Prof. Dr. R. L. Stens, Tel.: 80-94532 Dipl.-Math. A. Haß, Tel.: 80-94526

8. Übung zur Fourier-Analysis I

(Abgabe: 21.06.2002 vor der Übung)

Aufgabe 1: Lösen Sie die folgenden linearen Differentialgleichungen mit Hilfe der Fourier-Analysis.

a)
$$y'(x) + 2y(x) = \cos 2x$$

und verifizieren Sie das Ergebnis.

6

6

b)
$$y''(x) + y'(x) + y = \sin 3x + \cos x$$

Hinweis: Bilden Sie unter der Annahme der Existenz einer Lösung y die Fourier-Koeffizienten beider Seiten der Dgl; so erhalten Sie für jedes $k \in \mathbb{Z}$ eine Gleichung für $y^{\wedge}(k)$. Wenden Sie nach dem Lösen dieser Gleichungen die Umkehrtransformation an

Aufgabe 2: Betrachten Sie das **Fourier'sche Ringproblem** (aus der Einleitung der Vorlesung): Sei $f \in X_{2\pi}$. Bestimmen Sie eine Funktion u(x,t) für $x \in \mathbb{R}$ und t > 0, die 2π -periodisch in x ist und die folgenden Bedingungen erfüllt:

- i) $\frac{\partial}{\partial x}u(x,t)$, $\frac{\partial^2}{\partial x^2}u(x,t)$, $\frac{\partial}{\partial t}u(x,t)$ existieren für alle $x \in \mathbb{R}$ und t > 0.
- ii) u genügt der partiellen Differentialgleichung $\frac{\partial u(x,t)}{\partial t} = \frac{\partial^2 u(x,t)}{\partial x^2}$ für alle $x \in \mathbb{R}$ und t > 0.
- iii) $\lim_{t\to 0^+} \|u(\cdot,t) f(\cdot)\|_{X_{2\pi}} = 0.$
- iv) $u(\cdot,t) \in X_{2\pi}^{(2)}$ für alle t > 0.
- v) $\frac{\partial}{\partial t}u(\cdot,t) \in X_{2\pi}$ für alle t>0, und es gilt

$$\lim_{h\to 0^+}\left\|\frac{u(\cdot,t+h)-u(\cdot,t)}{h}-\frac{\partial u(\cdot,t)}{\partial t}\right\|_{X_{2\pi}}=0.$$

Hinweis: Wenden Sie unter der Annahme der Existenz einer Lösung u die Fourier-Transformation auf die Dgl aus ii) an. Lösen Sie die erhaltenen gewöhnlichen Dgl'en und transformieren Sie diese zurück. Verifizieren Sie schließlich die geforderten Eigenschaften für den so erhaltenen Kandidaten; benutzen Sie hierbei für iii) ohne Beweis, dass der (periodische) **Gauß-Weierstraß-Kern** $\{\chi_t\}_{t>0}$ mit $(\chi_t)^{\wedge}(k) = e^{-tk^2}$, $\forall k \in \mathbb{Z}, t>0$, eine gerade, positive, approximierende Identität für $t\to 0+$ ist (vgl. auch Lit. B VIII 3 (Butzer-Nessel), p.61, 281).

Aufgabe 3: Zeigen Sie, dass zwischen den $L^p(\mathbb{R})$ -Räumen keine Inklusionen bestehen, d.h., für $1 \le p, q \le \infty$ mit $p \ne q$ gilt

$$L^p(\mathbb{R}) \not\subset L^q(\mathbb{R})$$
 und $L^q(\mathbb{R}) \not\subset L^p(\mathbb{R})$.

Aufgabe 4: Zeigen Sie, dass die Funktion

$$f(x) := \begin{cases} x/e, & 0 \le x \le e \\ 1/\log x, & x > e \\ -f(-x), & x < 0 \end{cases}$$

zwar zu $C_0(\mathbb{R})$ gehört, aber nicht Fourier-Transformierte einer $L^1(\mathbb{R})$ -Funktion ist (vgl. Sie auch mit Übung 3, Aufgabe 3).

Hinweis: Lit. A II 1 (Goldberg), p.8

10

Aufgabe 5:

a) Berechnen Sie die Fourier-Transformierte der charakteristischen Funktion $\kappa: \mathbb{R}^n \to \mathbb{R}^1$ mit

$$\kappa_{[a,b]}(x) := \begin{cases} 1, & a \le x \le b \\ 0, & \text{sonst} \end{cases}$$

für $a \leq b$. Dabei bedeutet $a \leq b$ für $a = (a_1, \ldots, a_n), b = (b_1, \ldots, b_n) \in \mathbb{R}^n$, dass $a_i \leq b_i$ für $i = 1, \ldots, n$ ist.

2

b) Folgern Sie, dass es Funktionen $f \in L^1(\mathbb{R})$ gibt mit $f^{\wedge} \notin L^1(\mathbb{R})$.

2

44