7

14

5

14

Prof. Dr. R. L. Stens, Tel.: 80-94532 Dipl.-Math. A. Haß, Tel.: 80-94526

5. Übung zur Fourier-Analysis I

(Abgabe: 31.05.2002 vor der Übung)

Hinweis zu dieser Übung: Man betrachte die Beweise zu Lemma I 41, Satz I 43 und Folgerung I 51 und führe an geeigneten Stellen "gleichmäßige" Verallgemeinerungen durch.

Aufgabe 1: Seien $-\infty < a < b < \infty$, $f \in L^1_{2\pi}$ und $g \in L^\infty(a,b)$. Zeigen Sie, dass für $\rho \in \mathbb{R}$

$$h_{\rho}(x) := \int_{a}^{b} f(x - u)g(u) \sin \rho u \, du$$

eine stetige, 2π -periodische Funktion ist und dass gilt (vgl. Lemma I 41)

$$\lim_{\rho \to \infty} \|h_{\rho}\|_{C_{2\pi}} = 0.$$

Aufgabe 2:

- a) Seien $f \in L^1_{2\pi}$ und $c(x) \in L^{\infty}[a,b]$ für ein Intervall $[a,b] \subset \mathbb{R}$. Zeigen Sie die Äquivalenz der beiden folgenden Aussagen (vgl. Satz I 43).
 - (i) $\lim_{m \to \infty} ||S_m f c||_{L^{\infty}[a,b]} = 0.$
 - (ii) Es existiert ein $0 < \delta < \pi$, so dass

$$\lim_{m \to \infty} \left\| \int_0^{\delta} [f(\cdot + u) + f(\cdot - u) - 2c(\cdot)] \frac{\sin mu}{u} du \right\|_{L^{\infty}[a,b]} = 0.$$

b) Zeigen Sie, dass die Reihe $\sum_{k=1}^\infty \frac{\sin kx}{k}$ auf jedem kompakten Intervall $I\subset (0,2\pi)$ gleichmäßig konvergiert.

Aufgabe 3: Sei $f \in L^1_{2\pi}$ und $f \in C[a,b] \cap BV[a,b]$ für ein Intervall $[a,b] \subset \mathbb{R}$. Zeigen Sie, dass für jedes kompakte Intervall $[c,d] \subset (a,b)$ gilt (vgl. Folgerung I 51)

$$\lim_{m \to \infty} ||S_m f - f||_{C[c,d]} = 0.$$

Hinweis: Entgegen dem Vorgehen in der Vorlesung zerlege man zunächst f in zwei monotone Funktionen und nutze dann die (im "Parameter" x gleichgradige) Stetigkeit und die (gleichmäßige) Riemann'sche Lokalisationsbedingung (vgl. Aufgabe 2).

Aufgabe 4: Geben Sie eine Funktion $f \in L^1_{2\pi}$ und einen Punkt $x_0 \in \mathbb{R}$ an, so dass f in x_0 die Bedingung des Riemann'schen Lokalisationsprinzips nicht erfüllt.

8

Hinweis: Betrachten Sie die 2π -periodische Fortsetzung von

$$f(x) := \begin{cases} \frac{1}{2} \log |x| & x \in [-\pi, \pi) \setminus \{0\}, \\ 0 & x = 0 \end{cases}$$

im Punkt $x_0=0$, und benutzen Sie ohne Beweis, dass $\lim_{x\to\infty}\int_0^x \frac{\sin u}{u}du=\pi/2$ gilt.

48