Prof. Dr. E. Görlich Dipl.-Math. T. Heck

6. Übung zur Vorlesung Topologie

(Abgabe: Dienstag, 12.06.2001, bis 11.45 Uhr im Übungskasten)

Aufgabe 1: Zeigen Sie:

- a) Sind $(X, \mathcal{T}), (Y, \mathcal{T}')$ topologische Räume und $A \subset X, B \subset Y$, so gilt int $(A \times B) = (\text{int}A) \times (\text{int}B)$.
- b) Sind (X_i, \mathcal{T}_i) , $i \in I$, topologische Räume und $A_i \subset X_i$, $i \in I$, so gilt $\prod_{i \in I} (\text{int} A_i) \supset \text{int} (\prod_{i \in I} A_i)$.
- c) In b) gilt i.A. nicht Gleichheit.

5

Aufgabe 2: Sei *X* ein topologischer Raum und $A \subset X$ beliebig.

Zeigen Sie, dass es einen topologischen Raum Y und zwei stetige Abbildungen $f,g:X\to Y$ gibt mit

$${x \in X ; f(x) = g(x)} = A.$$

<u>Hinweis:</u> Wählen Sie für Y einen geeigneten Quotientenraum von $X \times \{1,2\}$.

4

Aufgabe 3: Auf (\mathbb{R}^2 , \mathcal{T}_{nat}) seien Äquivalenzrelationen R_1 , R_2 definiert durch

- (i) $((x_1,x_2),(y_1,y_2)) \in R_1 \iff x_1^2 + x_2^2 = y_1^2 + y_2^2$,
- (ii) $((x_1,x_2),(y_1,y_2)) \in R_2 \iff (x_1=y_1=0 \land x_2=y_2) \lor x_1=y_1\neq 0.$

 \mathbb{R}^2/R_j sei jeweils mit der Quotiententopologie \mathcal{T}_{R_j} versehen.

- a) Zu welchem bekannten topologischen Raum ist \mathbb{R}^2/R_1 homöomorph?
- b) Bestimmen Sie \mathbb{R}^2/R_2 und zeigen Sie, dass es [x], $[y] \in \mathbb{R}^2/R_2$ mit $[x] \neq [y]$ und $U \cap V \neq \emptyset$ für alle $U \in \mathcal{T}([x])$ und alle $V \in \mathcal{T}([y])$ gibt.

2

Aufgabe 4: Sei (X, \mathcal{T}) ein topologischer Raum.

- a) Zeigen Sie, dass die Zusammenhangskomponenten von X eine Partition von X bilden.
- b) $A \subset X$ heißt Zerlegungsmenge von X, falls A offen und abgeschlossen ist. Für $x \in X$ sei C(x) die Zusammenhangskomponente von X, die x enthält, und $Q(x) := \bigcap \{A \subset X \mid x \in A \text{ und } A \text{ Zerlegungsmenge von } X\}$. Man nennt Q(x) die Quasikomponente von x. Zeigen Sie:
 - (i) Für jedes $x \in X$ ist Q(x) abgeschlossen in X.
 - (ii) $\{Q(x) : x \in X\}$ ist eine Partition von X.
 - (iii) Für jedes $x \in X$ gilt $C(x) \subset Q(x)$.
 - (iv) C(x) ist genau dann offen, wenn Q(x) offen ist. In diesem Fall gilt C(x) = Q(x).

3

Aufgabe 5: Bestimmen Sie die Zusammenhangskomponenten von (X, \mathcal{T}) , falls

- (i) $\mathcal{T} = \mathcal{T}_A := \{U \subset X : A \subset U \text{ oder } U = \emptyset\}$ für ein $A \subset X$ ist,
- (ii) $\mathcal{T} = \mathcal{T}_{\mathcal{P}}$ Partitions topologie für eine Partition \mathcal{P} von X ist,
- (iii) $T = T_d$ für eine Ultrametrik d auf X ist.

3

Aufgabe 6:

- a) Seien (X, \mathcal{T}) , (X, \mathcal{T}') zwei topologische Räume, \mathcal{T} feiner als \mathcal{T}' und $Y \subset X$. Zeigen Sie: Ist Y als Unterraum von (X, \mathcal{T}) zusammenhängend, so ist Y auch als Unterraum von (X, \mathcal{T}') zusammenhängend.
- 2

5

b) Zeigen Sie: Die natürliche Topologie \mathcal{T} auf \mathbb{R}^n (\mathbb{C}^n) ist feiner als die Zariski-Topologie \mathcal{T}_Z auf \mathbb{R}^n (\mathbb{C}^n). Folgern Sie:

$$(\mathbb{R}^n,\mathcal{T}_Z)\ ,\ (\mathbb{C}^n,\mathcal{T}_Z) \quad \text{ sind zusammenhängend }.$$

Aufgabe 7: Mittels des Zusammenhangs zeige man, dass $(\mathbb{R}, \mathcal{T}_{nat})$ und $(\mathbb{R}^n, \mathcal{T}_{nat})$ für $n \ge 2$ nicht homöomorph sind.

Aufgabe 8*: Sei \mathbb{K} ein Körper, versehen mit der diskreten Topologie, $V \neq \{0\}$ ein \mathbb{K} -Vektorraum und $\mathcal{U} := \{U \mid U \text{ Unterrraum von } V \text{ mit } \dim(V/U) < \infty\}$. Zeigen Sie:

a) $\mathcal{B} := \{x + U ; x \in V, U \in \mathcal{U}\}$ ist Basis einer Topologie \mathcal{T} auf V.

Betrachten Sie nun den topologischen Raum (V, \mathcal{T}) . Zeigen Sie weiter:

- b) Die Elemente von \mathcal{B} sind abgeschlossen.
- c) V ist genau dann diskret, wenn $\dim V < \infty$.
- d) Endomorphismen von V sind stetige Abbildungen.
- e) Die Abbildungen $V \times V \to V$, $(x,y) \mapsto x + y$ und $\mathbb{K} \times V \to V$, $(\alpha,x) \mapsto \alpha x$ (Skalarmultiplikation) sind stetig.
- f) Ist $(b_i)_{i\in I}$ Basis von V, so ist die Abbildung $f:V\to\mathbb{K}^I,\ v:=\sum_{i\in I}\alpha_ib_i\mapsto (\alpha_i)_{i\in I}$ injektiv und stetig. Ist f offen?