8. Übung zur Analysis IV

Abgabe: Freitag, 22.06.2001, 13.00 Uhr

Aufgabe 1 (2+2 Punkte):

- a) Sei f(z) holomorph auf dem Kreis $K_R(0)$, R > 0. Zeigen Sie, dass die Funktion $M(r) := \max_{|z|=r} |f(z)|$ streng monoton in r, 0 < r < R, wächst, sofern f(z) nicht konstant ist.
- b) Sei f eine ganze Funktion mit Re(f(z)) > 0 für alle $z \in \mathbb{C}$. Zeigen Sie, dass f konstant ist.

Aufgabe 2 (4 Punkte):

Die Potenzreihe $\sum_{n=0}^{\infty} a_n z^n$ habe den Konvergenzradius R>0. Welchen Konvergenzradius haben

die Potenzreihen $\sum_{n=0}^{\infty} \frac{a_n}{n!} z^n$ und $\sum_{n=1}^{\infty} \frac{a_n}{n} z^n$?

Aufgabe 3 (4 Punkte):

Man bestimme die ersten fünf Koeffizienten der Potenzreihenentwicklung $\sum_{n=0}^{\infty} a_n z^n$ für $e^{\frac{z}{1-z}}$ und $\sin(\frac{1}{1-z})$.

Aufgabe 4 (5 Punkte)

Die Funktion f(z) sei im Kreise $K_1(0)$ holomorph und stetig auf $\overline{K_1(0)}$, und es gelte

$$\lim_{r \uparrow 1} f(re^{i\theta}) = 0$$

gleichmäßig in einem Sektor $\alpha < \theta < \beta$. Beweisen Sie, dass dann f(z) auf $\overline{K_1(0)}$ identisch verschwindet. (Tip: Betrachte die Funktion $f(z)f(\omega z)f(\omega^2 z)\dots f(\omega^{n-1}z)$ mit $\omega = \exp(2\pi i/n)$ und $n \in \mathbb{N}$ genügend groß.)

Aufgabe 5 (L, 2+3+3+1):

Seien $z_0 \in \mathbb{C}$ und

$$\mathcal{M} = \{ f : U \to \mathbb{C}; U \text{ offene Umgebung von } z_0, f \text{ holomorph} \}$$

die Menge der in z_0 holomorphen Funktionen.

a) Für $f:U\to\mathbb{C}$ und $g:V\to\mathbb{C}$ aus \mathcal{M} definiert man

$$f \sim g \Leftrightarrow \text{ Es existiert ein } r > 0 \text{ mit } f|_{K_r(z_0)} = g|_{K_r(z_0)}.$$

Zeigen Sie, dass dadurch eine Äquivalenzrelation auf \mathcal{M} gegeben wird.

Mit $\mathcal{R} := \mathcal{M}/\sim = \{[f]; f \in \mathcal{M}\}$ bezeichnen wir den Raum der Äquivalenzklassen, den so genannten Raum der holomorphen Funktionskeime.

b) Zeigen Sie, dass $\mathcal R$ mit den Verknüpfungen

$$[f] + [g] := [f + g], \quad [f] \circ [g] := [fg], \quad \alpha[f] := [\alpha f]$$

zu einer kommunikativen C-Algebra mit Einselement wird.

- c) Zeigen Sie, dass \mathcal{R} ein lokaler Ring ist, in dem jedes Ideal außer $\{0\}$ die Form $I_n = ([z-z_0]^n), n \in \mathbb{N}_0$, hat. I_1 ist das eindeutig bestimmte maximale Ideal mit $\mathcal{R}/I_1 \cong \mathbb{C}$.
- d) Bestimmen Sie die Einheiten von \mathcal{R} .

Dabei heisst ein kommutativer Ring mit Eins lokal, falls er genau ein maximales Ideal besitzt.