VECTOR BUNDLES OVER CURVES OF GENUS ONE
AND ARBITRARY INDEX

S. Pumpliin

Abstract Vector bundles on curves of genus one and arbitrary index are
investigated and classified, extending Atiayh’s results on curves of genus
one over algebraically closed fields. Absolutely indecomposable bundles

have certain admissible slopes which depend on the index of the curve.

Introduction

There exist only few examples of algebraic varieties over fields where vector bundles are
classified explicitly. The (absolutely) indecomposable vector bundles on elliptic curves over
algebraically closed fields are determined by Atiyah [At] (cf. [At], Theorem 7 for the main
result) in 1957. Using methods of descent, his results are extended by A. Tillman [T]
in 1983, who classifies the indecomposable vector bundles on elliptic curves with rational
points over perfect base fields. The (unpublished) results of her thesis on indecompos-
able vector bundles on curves, are generalized and extended to arbitrary proper algebraic
schemes by Arason, Elman and Jacob [AEJ1] in 1994. One of the main theorems shows
that indecomposable vector bundles on a proper scheme over a field k, can be realized as
traces of absolutely indecomposable vector bundles on the scheme, obtained by extending
the base field from & to a maximal subfield of the reduced endomorphism ring of the bundle
([AEJ1], 1.8).

An indecomposable vector bundle need not be indecomposable any more after an
extension of the base field. This phenomenon is studied both in [T]| and [AEJ1]|. Their
approach relies on the assumption that the vector bundles on the corresponding scheme
X:= X x; k have been classified already, where k denotes the algebraic closure of k.
Therefore, all of the above use methods of descent, i.e., change bases in their proofs, and
rely on Atiyah’s classification of the indecomposable vector bundles over the elliptic curve
X, to classify the indecomposable vector bundles in the special case where X is a curve of
genus 1. In this context, it makes sense to only study curves of genus 1 over perfect fields

which have rational points, that means are of index 1.
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Here, a different approach to study the indecomposable vector bundles on a curve of genus
1 is presented. It is possible to obtain classification results for absolutely indecomposable
vector bundles on a curve of genus 1 by directly adapting Atiyah’s original proofs to a
more general setting. We are able to omit the assumption that the considered curve needs
to have rational points, and often also that its base field needs to be perfect. This shows
how canonical Atiyah’s methods of proof are. Hence we obtain classification results for
vector bundles on any curve of genus 1. These are the basis for a quick overview on results
on symmetric bilinear forms [Pul] generalized from [AEJ1, 2] and a comprehensive study
of quaternion algebras over curves of genus 1 and arbitrary index [Pu2].

The paper is organized as follows. After some preliminaries, section 2 deals with
splittings of vector bundles on a curve, introduced in [At] for curves over algebraically
closed fields. We investigate maximal splittings for bundles over arbitrary base fields (2.2),
adapting [At], Part I, Section 4. This yields a generalization of [At], Theorem 1, which
is a refinement of Serre’s Theorems A and B for indecomposable vector bundles (2.13).
In section 3, maximal splittings are used to understand absolutely indecomposable vector
bundles on curves of genus 1 and arbitrary index, over an arbitrary base field k. The
evaluation map a: H%(X,€) ® Ox — € contains information about the behaviour of an in-
decomposable bundle £ under base changes (cf. 3.2, 3.7). We prove a generalization of [At],
Theorem 5 (i) by adapting Atiyah’s original method of proof to our more general setting
without using descent: For any curve of genus 1, there exists an absolutely indecomposable
bundle F, of rank r and degree 0 on X, with nontrivial global sections, which is unique
up to isomorphism (3.12). Moreover, the absolutely indecomposable bundles of rank r and
degree 0 are classified (3.13), in particular the selfdual ones among these (3.14). Atiyah’s
thoughts about the structure of the subring of the set of isomorphism classes of vector bun-
dles on X which is generated by the classes of these F,., r > 1, carry over without change
provided that H°(Pic®(X*?)) = Pic’X holds (see 3.17, 3.18). In section 4, an algorithm
inspired by Atiyah’s inductive definition of the bijection he constructs in the proof of [At],
Theorem 6 is developped: (For the special case i = 1 it is the classical euclidean algorithm
with a “little twist”.) A pair (r,d) with r > 1 is called admissible with respect to an integer
i > 1 if the algorithm stops with a pair (h,0). By construction, & is the greatest common
divisor of r and d. This algorithm is applied to classify absolutely indecomposable vector
bundles over curves of genus 1 and index ¢, which have rank r and degree d, where (r,d) is
an admissible pair with respect to i (4.1, 4.2, 4.3, 4.4). As a consequence, the determinant
is a bijective map from the set of isomorphism classes of absolutely indecomposable vector
bundles on X of rank r and degree d to the set of line bundles of degree d, for any admis-
sible pair (r,d), with r and d coprime (4.7). Furthermore, ([At], Corollary to Theorem 7)
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does not generalize to curves over fields that are not algebraically closed. A weaker result
is obtained instead (4.8 and 4.9). For curves of genus 1 with index greater than 1, a G-
invariant isomorphism class of an indecomposable vector bundle is not necessarily defined
over X where G = Gal(k*P/k) is the Galois group of the separable closure k%P over k.
(This holds, if X has index 1, see [T], 6.9). Such a G-invariant isomorphism class is defined
over X in the general case as well, provided that the vector bundle has an admissible slope
with respect to the index of X and provided that H®(Pic®(X*¢P)) 2 Pic’X holds (4.11).
For a perfect base field, D(M) = End(M) /rad(End(M)) is a field, for an indecomposable
vector bundle M on X, if one of the conditions in (4.12) hold. We show when there indeed
are no absolutely indecomposable vector bundles on a curve of genus 1 with non-admissible
rank and degree (r, d) with respect to the index (4.15). If X is a curve over a perfect field
satisfying H°(Pic’X) = Pic’X, for any admissible pair (r,d) with respect to the index
of X, there is a bijection between the set of all isomorphism classes of indecomposable
vector bundles of fixed rank r and degree d on X, and the set of (closed) points on E,
whose degree divides 7 (4.16). In section 5, the structure of absolutely indecomposable
vector bundles of rank r and degree d, with r and d coprime, is investigated. Generalizing
lemmata in [At], Part II1.2. we obtain a description of vector bundles on X when k£ = R.
Their rank and degree need not be coprime anymore, but have to be an admissible pair
with respect to the index of X (5.8). This adapts [At], Theorem 10.

Throughout the paper, R is a commutative associative ring with a unit element, and
k a field. We use the standard terminology of algebraic geometry from Hartshorne [H].
Some results and terminology from Arason, Elman and Jacob [AEJ1] are used. Most facts

about elliptic curves used here can be found in Silverman’s book [Si].
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1. Generalities

Let X be an integral noetherian regular scheme of dimension 1 with generic point &, and
& a vector bundle on X of rank r. Write K for the constant sheaf K:= k(X) = O¢ x on
X, and y = y(€) for the constant sheaf V:= V(£):= & on X. We identify Ox C K
and £ C y via the canonical monomorphisms, and also £V C y(£Y) = ([V(€)]Y)~. Each
nonzero global section s € H%(X, £) corresponds to an Ox-linear map

0+# s5:£Y — Ox. Its image L: = ims C Ox is an Ox-submodule, and indeed an invertible

sheaf of ideals. The exact sequence
£ Vs—> L—0

induces the exact sequence
0— LY—7E.
S

Define
[s]: = sV (LY),

then [s] is a subsheaf of £ which is an invertible sheaf of ideals. The set {P € X | sp:EY —
Op x surjective } = {P € X | s(P) # 0} is open and dense in X.

From now on let X be a curve over the field k, i.e., a geometrically integral, complete,
smooth scheme of finite type over k of dimension 1. Let X:= X Xj k be the base change
of X from k to the algebraic closure k of k, and let X’:= X xj k' be the base change
of X from k to a field extension k' of k. For a vector bundle £ on X we usually write
=€ ®o, Ox' and €: = £ ® O for the corresponding vector bundle on X', respectively
on X. Recall that HY(X,&) ® k' = H*(X',£’). For any finite separable field extension
k' /k, nonisomorphic vector bundles on X extend to nonisomorphic vector bundles on X’
(see for instance [AEJ 1], p.1325). For two line bundles £1, L2 € Pic(X) we write £1 > Lo
if HY(X, Homx (L2, L£1)) = Hom(Ls, £1) # 0. Thus £1 > L, if and only if LY ® L1 > Ox.
In particular, £ > Ox is equivalent to H°(X, £) # 0. That means, £; > Ox if and only
if there is an effective divisor D on X such that £, = L£(D). Moreover, if £1 > L, then
deg L1 > deg Ly. Also, L1 > Lo if and only if £1 @ Ox' > L3 @ Ox:.

1.1 Remark (i) Let N € Pic(X) be a line bundle on X and 0 # s € H°(X, N) a nonzero
global section of N'. Then N 2 [s].

(ii) Let 0 # s € H°(X, &) be a nonzero global section of a vector bundle £ on X. Then
[s] ® Ox' = [s ® Ox/], where X’ = X Xy, k' is the base change of X from k to some base
field extension k'.

(iii) For each 0 # s € H°(X, £) we know that [s] > Ox, thus deg s: = deg[s] > 0, and that
HO(X, [5]) #0.



(iv) (see also [H], IV.1.2.) Let X be a complete nonsingular curve over k. Let £ € Pic(X)
be a line bundle on X with deg £ =0 and H°(X, L) # 0. Then £ = Ox.

(v) Let £ € Pic(X) be a line bundle such that deg £ > 0. Then deg £V < degOx = 0 and
thus H°(X,£Y) = 0. On the other hand, if deg £ < 0, then H°(X, L) = 0.

(vi) For a nonzero global section 0 # s € H(X, £) of a vector bundle £ on X the morphism
0 # 5:£Y — Ox is surjective if and only if deg s = 0.

2. Splittings of vector bundles on arbitrary curves

Let X be a nonsingular curve over an arbitrary field k. Following [At], p.419 a splitting of

a vector bundle £ on X of rank r is a sequence of vector bundles on X

0=¢ CcéCc---Ccé1CéE =€

such that £;: = &;/€;_1 is a line bundle on X for 1 < i < r. We also write £ = (L1,...,L;).
For1<:<r,
ED:=¢£/& 4

is a vector bundle of rank r + 1 — 4, and by defining
Ei=Ejpina/Eia , 0<j<r+1—i
we obtain a splitting of £®*) such that

E;-Z): = 5](2)/53(2_)1 = Livi
for 1 < j <n+1—1i. In particular, given a splitting (Lq,...,L;) of £, L1 is a line bundle
which is a subbundle of £, and (£3,...,L,) is up to isomorphism a splitting of the rank

r — 1 vector bundle £/L£;. The short exact sequence
0—L, —E&—E/L;—0

yields det & = ATE 2 det L1 @ det E/L1 =2 L1 ®det E/Ly. Therefore detE 2 L1 Q- - ® L,

by induction on the rank r of £, and deg& = ) deg L;. Every vector bundle on X has a
=1

splitting (the proof in [At] generalizes immediately).

2.1 Lemma Let £ be a vector bundle of rank r on a nonsingular curve X of genus g.
(i) Let H°(X,E) # 0. Then
degs < sup {degL;}
1<i<lr
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for each 0 # s € H°(X, &) and each splitting (L1, ..., L) of €.
(i1) h°(X,€) < 3" (X, L;), for each splitting (Lq,...,L,) of .
i=1

The proof of (i) is analogous to the one given in [At], Lemma 2, (ii) is proved by
induction on the rank of £.

2.2 Definition [At] (i) A nonzero global section s € H°(X, £) is called mazimal, if deg s
is maximal.
(ii) [s] is a mazimal line bundle, if s € H°(X,£) is a maximal nonzero global section.
(iii) (L1, ..., L) is a mazimal splitting of & if

(a) L4 is a maximal line bundle of &,

(b) (La,...,L,) is a maximal splitting of £/L.

The maximal degree of a section 0 # s € H°(X, ) is always finite by Lemma 2.1. A
maximal splitting of £ always exists if £ has sufficient sections.

2.3 Example Let £ be a vector bundle of rank 2 with H°(X,£) # 0. For each

0+# s € H(X,E) the series {0} = & C & = [s] C & = £ is a splitting of £ with £; = [s],
Lo = &/[s]. In particular, we obtain the short exact sequence 0 — L1 — & — Lo —> 0.
If we assume that s € H%(X, £) has maximal degree, then £; = [s] is a maximal line bundle.
Since deg& = deg L1 + deg Lo the degree of Lo is uniquely determined by the degree of
the maximal global section s. In case H°(X, Ly) # 0, for each section 0 # t € H°(X, L)
we obtain Lo 22 [t] and degt = deg Lo is necessarily maximal, so (£q,Ls) is a maximal
splitting of £. In case H°(X,L;) = H%(X,E/[s]) = 0 for every 0 # s € HY(X,€&) of
maximal degree, £ does not have a maximal splitting.

2.4 Remark For a maximal splitting (£4,...,L,) of & we know that degL; > 0 for

t=1,...,7 and thus d = deg& = )_ deg L; > 0 is a necessary condition for its existence.
i=1
In particular, if d = deg€ = 0, then H°(X, £;) # 0 and deg £; has to be 0 for i = 1,...,7.
This means that (Lq,...,£L,) = (Ox,...,0x).
As long as we assume that the curve still has rational points, the proof of [At], Lemma

3 can be adapted to the more general situation considered here, and we obtain

2.5 Lemma Let X be a curve over k of genus g = h*(X, Ox) with a k-rational point, and
let £ be a vector bundle on X of rank 2. A mazimal splitting (L1, L2) of € satisfies

deg Lo — deg L1 < 2g.

The proof of 2.5 uses the following observation, which we will use repeatedly later on:

Let X be a curve over k with a k-rational point. Let £ be a vector bundle on X such that
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deg s = 0 for each nonzero global section 0 # s € H°(X, £). Then the canonical morphism

a(P):H*(X,E) @ k(P) — Ep Qo x k(P)

sR1Ir—spR1

is injective for each k-rational P € X. Hence, ap: H*(X,€) ®; Op x — Ep is injective for
each k-rational point P € X. In particular, m = h%(X,€) < rank £ = r. In other words:
If there is a k-rational point P € X such that H*(X,€) ® Opx — Ep is not injective,
there exists a nonzero global section 0 # s € H°(X, £) such that degs > 1.

[At], Lemma 4 still holds for curves containing rational points, since its proof mainly

relies on 2.5.

2.6 Lemma Let X be a curve over k of genus g with a k-rational point. Let £ be a vector

bundle on X with a mazimal splitting (Lq,...,L;). Then
degL; —deg L; 1 < 2g (i=2,...,7).

2.7 Corollary Let X be a curve of genus g over k with a k-rational point and let £ be a
vector bundle on X with a mazimal splitting (L1, ...,L,). Then

deg L1 > ;—i —g(r—1),

where d = deg & and r = rank €.

Proof It follows from 2.6 that deg £; — deg L, = (degL; — deg L;—1) + --- + (deg Lo —
deg £1) < (i —1)2g and hence —2¢g(i — 1) < deg £y — deg L; for i = 2,...r. Summing up
these inequalities for ¢ = 2, ...r we obtain —2g@ <rdegLi—dordegLy > %—g(r—l).
L]

2.8 Remark (i) Let £ be an indecomposable vector bundle on X of rank 2 and let (L1, £5)
be a splitting of £. Then deg Ly > deg Ly — (29 — 2), where g denotes the genus of X,
and Lo > L£; > Ox if X has genus 1. (Applying [At], Lemma 5 to the short exact
sequence 0 — L1 — & — Lo — 0 we obtain an Ox-linear map 0 # f: £; — L3 ® wx, so
Lo®@wyx > L1 and deg Lo +degwx = deg Lo+ 29 — 2 > deg L1.)

(ii) Let X be a curve of genus g over k with a k-rational point, and £ an indecomposable
vector bundle of rank 2 on X with a maximal splitting (L1, £2). Then deg Lo > 4 —(3g—2),
where d = deg £. (This follows from (i) and 2.5 as in the proof of [At], Lemma 7.)

(iii) Let £ be an indecomposable vector bundle on X with a splitting (£4,..., L)
such that & and £/L; are indecomposable. Then it can be proved by induction that
deg L; —deg L;—1 >2g—2for i =2,...,r, that means deg £; > deg Ly + (i — 1)(2g — 2).
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The above observations can be generalized for indecomposable vector bundles £ on X

of arbitrary rank r.

2.9 Theorem (i) Let £ be an indecomposable vector bundle with sufficient sections on a

curve X of genus g > 1. Then there exists a maximal splitting (L1, ..., L,) of £ such that
deg £; > deg L1 — (i —1)(29 — 2)

fori=2,...r.
(11) Let € be an indecomposable vector bundle on a curve X of genus g = 1 with H°(X, &)
# 0. Then & has a mazimal splitting (L1, ..., L,) such that L; > L1 > Ox fori=2,...,r.

The proof is analogous to the one of [At], Lemma 6 and 6.

It has been observed by Atiyah already that (for algebraically closed k) the inequality
in Theorem 2.9 (i) is of course valid for any maximal splitting of a vector bundle £ which
is indecomposable with sufficient sections. This is probably true also in our situation,
however, we do not pursue this question here, since the version at hand suffices for our
purposes. The proof of 2.12(i) given by Atiyah does not work for genus 0 (the inequality
at line -4 of [At], p. 422 is only correct as long as 2g — 2 > 0).

2.10 Example Let X be the nonrational curve of genus 0 over k£ which is associated with
the quaternion division algebra (a,b);. Let Py € X be a point of minimal degree, i.e.,
deg Py = 2. Let k' /k be a separable quadratic splitting field of (a,b); and X': = X Xy k.
The vector bundles Go: = trg /5 (Ox:(1)) and Gy: = Go ® L(MPy) = try /5 (Ox (2m + 1))
for m € Z, m # 0, are indecomposable. It is known that H°(X,G,,) # 0 iff m >
0,det G, = L((2m+1)Fy), and thatdeg G, = 2(2m + 1). The generalized Euler-sequence

0— Ox — Gy — L(Py)) — 0
induces the canonical sequence of G,,,
0 — L(MmPy) — Gpy, — L((m+1)Py) — 0.

Obviously, (L(mPp), L((m + 1)FPp) is a splitting of &,,. By Serre’s Theorem A, G,, has a
maximal splitting for m>>0. Let (L1, L3) be such a maximal splitting of G,,, i.e., L1 =
L(n1Py) and Lo = L(n2Py) with ny,ny > 0. Applying 2.8(i) for r = 2 yields (1): ny >
ny + 2, and (2): 2m + 1 =ny + ny, m > 0. Now

R X,Gm ® LY) > X(Gm ® LY) = x(Ox) + x(L2 ® LY) =2+ 2(nz — ny) > 6,
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and therefore
HO(X7 gm ® E\l/) = HO(X, trk:/k(0X1(2(m — nl) + 1)) 7é 0= m > n;.

For m > 0, H°(X, £L(mP,)) # 0 and thus there exists a nonzero section t € H°(X, G,,)
such that £L(mPp) = [t]. In particular, we have nq > m this way and therefore m = ny.
Hence (L1, L2) = (L(mPy), L((m + 1)F,) is the canonical splitting from above. Indeed,
one can show that each G,, with m > 0 has a maximal splitting (L(mPy), L((m + 1)P):
Let 0 # s € H°(X,G,,) be a maximal section, then [s] = £L(n1P) and degs = 2n; >
2m = deg L(mP,). Now by 2.8 we have deg L(naFPy) > deg L(n1Py) + 2 > 2 implying
hO(X, L(n2Py)) > x(L(n2Po)) = deg L(n2Py) + 2 which means H°(X, L(naFPp)) # 0 and
the existence of a maximal splitting is proved (2.3). We summarize: For m > 0, the
maximal splitting (L1, L2) = (L(mPy), L((m+1)Fy) of Gy, satisfies deg Lo —deg L1 =2 >
g = 0, so 2.5 (which generalizes [At], Lemma 3), indeed does not hold for a nonrational
curve X of genus 0. Moreover, if k is the algebraic closure of k, and if X: = X xj k denotes
the base change from k to k, then over X the above maximal splitting of G,, becomes the

exact sequence
0 — Ox(2m) — Ox(2m +1) ® Ox(2m +1) — Ox(2(m+1)) — 0

with deg Ox(2(m + 1)) = 2m + 2 > deg Ox(2m) = 2m, thus it cannot be a maximal
splitting for the rank two vector bundle G,, ® Ox = Ox(2m+ 1) ® Ox(2m + 1) on X
by [At], Lemma 3. Thus a maximal splitting of a vector bundle does not necessarily stay

maximal under base field extensions.

2.11 Lemma Let X be a curve over k with a k-rational point and £ an indecomposable
vector bundle on X with r = rank & and d = deg&. Then £ has a splitting (L1,...,L;)
satisfying
d
deg L; > — — (r —1)(3g — 2).
r
Both the statement and the proof are analogous to the proof of [At], Lemma 7 and

uses 2.5, 2.6 and 2.9.

2.12 Lemma Let L € Pic(X) be a line bundle with d = deg L, and let g be the genus of
the curve X. If d > 2g then L is ample.

A vector bundle £ on X is called ample [At] if £ has sufficient sections and H*(X, &) =
0 for each 7 > 0.

Proof. By [At], Lemma 8, £: = £ ® O is ample. Hence h'(X, £) = 0 and the evaluation
map a: H(X, £)®O« — L of L is surjective. Let a: H(X, £)®Ox — L be the evaluation
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map of £. Identify @ = a®p, O«. Since OQ + is faithfully flat over Op x, for each Q € X
with 7(Q) = P, 7: X — X the projection morphism, it follows that « is surjective as well.
O

Recall that for a morphism of schemes 0: X — Y with Y = SpecA affine, and an
Ox-module £, there always exists a canonical morphism a: HY(X,€) ® Ox — &, called
the evaluation map of £.

For every absolutely indecomposable vector bundle £ on X of degree d and rank r
there exists an integer N(g,r,d) such that h'(X,€(n)) = 0 and such that for Ox(n):=
Ox(n) ® O the bundle £ ® Ox(n) has sufficient sections for all n > N(g,r,d), i.e., the
evaluation map a@: H(X,€(n)) ® Ox — €(n) is an epimorphism. This is an immediate
consequence of [At], Theorem 1. For indecomposable vector bundles on X, this theorem

can be generalized as follows.

2.13 Theorem Let X be a curve over k of genus g with a k-rational point. There exists
an integer N(g,r,d) such that £(n) is ample for every indecomposable vector bundle € on
X of rank r and degree d, and all n > N(g,r,d).

Proof Define N(g,r,d) to be the first integer greater than or equal to —% + (r — 1)(3g —
2) + 2g. Let £ be any indecomposable vector bundle on X with d = deg& and r = rank
E. By 2.11, there exists a splitting (£4,...,L,) of £ such that

deg £; > d_ (r—1)Bg—-2)
T
for i =1,...,r. Therefore (L1(n),...,L-(n)) is a splitting of £(n) satisfying
d
d;:=deg Li(n) > " +nh— (r—1)(3g — 2),

where h = deg O(1) again. For each n > N(g,r,d)

d d
deg £i(n) 2 — +h(=—+ (r —1)(3g — 2) +2g) — (r — 1)(39 - 2),
> 29
Thus £;(n) is ample for s = 1,...,r (2.12) and so is £(n). O

3. Absolutely indecomposable vector bundles of degree 0

Let X be a nonsingular curve over a field k, k%P the separable closure of k, k the algebraic
closure of k, and let X*P:= X x; kP and X:= X xj k denote the base changes for
X from k to kP respectively k. Recall that the indez of X (denoted ind(X)) is the
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greatest common divisor of the degrees of the field extensions k’/k such that X (k') # 0.
A vector bundle £ on X is called separably indecomposable, if £5°P: = € ®p, Oxser is an
indecomposable vector bundle on X*°?. We define the following sets of isomorphism classes

of indecomposable vector bundles of rank r and degree d:

Qx(r,d) = Q(r,d) = {[€] | £ an indecomposable vector bundle on X of degree d and rank
r}

Qx(r,d) = Q(r,d) = {[€] | £ an absolutely indecomposable vector bundle on X of degree
d and rank r}

To avoid complicated terminology we refrain from writing [£] when we mean an ele-
ment of Q(r, d), but simply write £ instead. Obviously, Q(r,d) C Q(r,d). There exists a
bijective map between (7, d) and Q(r,d + nir) for any integer n, given by £ — £ ® A",
where A is a line bundle on X of degree i. (This also applies to the set Q(r, d).) Therefore
it suffices to investigate these sets for 0 < d < ir, for instance.

From now on, X is a curve of genus 1. In this case we do not need to distinguish
between absolutely indecomposable and separably indecomposable vector bundles. The
proof of the following proposition was communicated to us by J.K. Arason.

3.1 Proposition Let X be a proper scheme over a field k. Then a vector bundle £ on X

1s separably indecomposable if and only if it is absolutely indecomposable.

Proof Obviously, any absolutely indecomposable vector bundle on X is separably inde-
composable. Now assume that k is separably closed, and £ is indecomposable over X.
Then D(€): = End(€)/rad(End(€)) is a finite field extension k' of k. Let £: = k(x;) with

z¥ = a be an inseparable extension of k. By extending scalars, we get the vector bundle

N:=E®Oy onY:= X xi £, and D(N) = D(€ Qo Oy) = D(E) @ £/rad(D(E) Qi £) =
k'(x;). If the polynomial P — a is irreducible over k', this is already a field. Otherwise
there is an element ¢ € k' such that ¢? = a and the radical of k¥'(x;) is generated by z; — c.
Hence k'(x;) modulo its radical is k¥’. In any case, D(N) is a field, thus N = £ ®o,, Oy
is indecomposable over Y. It follows that £&:= € ® O stays indecomposable. O

In the more general setting of curves of genus 1 and arbitrary index, Atiyah’s Lemma
10 becomes

3.2 Lemma Let X be a curve of genus 1 and index i over k. Let £ be an indecomposable
vector bundle on X of rank r such that m = h°(X,£) > 0 and 0 < d = deg € < ir.

(i) € has a mazimal splitting (L1,...,L,) such that L; > L1 = Ox forj =2,...,r. In
particular, deg s = 0 for each nonzero global section s € H°(X,€). Ifi =1 then

a(P): H(X,€) ® k(P) — Ep ® k(P)

11



18 injective for each k-rational point P € X.

(i1) Let k' /k be a field extension such that X (k') # (0. Define X': = X x k.
If &' =€ ®p, Oxr is indecomposable over X' and of degree d < r, then

Otp:HO(X,g) X OP,X — &p

is injective for each k'-rational point P € X.

(iii) If € is absolutely indecomposable of degree d < r, the evaluation map
wHY (X, )@ Ox — &

is injective, and Og(m) 15 a subbundle of £.

In the cases (i) (fori=1), and (ii) we get m < r, in case (iii), even m < r.

Proof (i) By 2.9 (ii), the vector bundle £ has a maximal splitting (L4, ..., [,T) satisfying
Lj> Ly > Ox for j=2,...,7. Assume that degL; > 0, then d = deg& = Zdeg[, >

rdeg L1 > ir, a contradiction to the hypothesis that d < ¢r. Thus it follows that deg L1=0
and £; 2 Ox by 1.15. Since £; is a maximal line bundle of £, this implies deg s = 0 for
each nonzero global section 0 # s € H°(X, £). Therefore for ¢ = 1 the morphism «(P) is
injective for each k-rational point P € X (see the remark after 2.5).
(ii) Let 7: X’ — X be the projection morphism. For & = £ ® Ox: consider the
evaluation map
o HY(X', & @ Ox1 — E'.

By (i), the map o/(Q) is injective for each k’-rational point @) € X’. Furthermore, we may
identify o/ = a ®0, Ox' where a: H*(X,€) ® Ox — £ is the evaluation map for £, and
obtain that ap = ap ® ide,, , is injective for each P € X with P = 7(Q). This implies
the injectivity of ap, since Og x is faithfully flat over Op x.

(iii) The proof is obvious. O

By the theorem of Riemann-Roch, m > 0 always holds for d > 0. For a vector bundle
£ on X with d = deg€ > r = rank &, there cannot exist a point P € X such that the
map «(P) is injective (otherwise we obtain the contradiction » > d > r by Riemann-
Roch). Moreover in case d = r, the injectivity of a(P) implies that a(P) and thus ap is
an isomorphism, and that h°®(X,£) = r. Thus £ is globally free and generated by global

sections in case a(P) is injective for all P € X.
There are several ways to generalize Atiyah’s Lemma 11:

3.3 Lemma Let X be a curve of genus 1 and index ¢ over k. Let £ be an absolutely

indecomposable vector bundle on X of rank r and degree d > r. Then E:= £ ® Ox has

12



a mazimal splitting (L1, ...,L,) such that L; > L, > O for j =2,...,7. In particular,
(X, €) =d.

Proof By 2.9, £ possesses a maximal splitting (Ly, ..., L) satisfying £; > £; > O« for
j=2,...,r. If deg £y = 0 then £; = O (1.6) and oz H°(X,&) ® O — & is injective.
Hence m = h%(X,€) < r. However, by Riemann-Roch r > m > deg& and we obtain
the contradictions that » > r if deg€ > r, and & = (’)E(_m ) if deg& = r. Thus always
degL; > degLy; >0 for j=2,...,r. Since L; > O for j = 1,...,r it follows that
h'(X,L;)=0for j=1,...,r and so h}(X,€) = 0. O

3.4 Corollary Let X be a curve of genus 1 and index © over k. Let £ be an absolutely
indecomposable vector bundle on X of rank r and degree r. Then £ = £ ® Ox has a
maximal splitting (L, ..., L) such that deg L = 1.

Proof £ has a maximal splitting (L4, ...,L,) such that £; > L1 > Ox for j =2,...,r
(3.3). Since r = deg€ = > degL; > rdegLy > r we know that degL; = 1, for j =

j=1
2,...,n. Furthermore, £; > £L; is equivalent to H°(X, LY ® £;) # 0 and since deg(LY ®
L) =0, weget L; =Ly forj=2,...,n. 0

3.5 Lemma Let X be a curve of genus 1 and index i over k. Let £ be an indecomposable

vector bundle on X of rank r and degree d.

(i) Ifi =1 and d > r then € has a mazimal splitting (L1, ..., L) such that L; > L1 > Ox
forj=2,...,r, and h°(X,€) = d.

(ii) If d = ni with 0 < n < r then £ has a mazimal splitting (L1, ...,L,) such that
L;> L =0x.

Proof By 2.9, there is a maximal splitting (L1, ..., L,) of £ such that £; > £; > Ox for
J=2,...,T.

(i) Assume deg £y = 0 then £; = Ox and since ind(X) = 1, this implies that ap
is injective for all k-rational points P € X. Hence » > m and since m > deg& = d by
Riemann-Roch, this is a contradiction. Therefore deg L; > deg £y > 0 for j = 2,...,r and
thus h'(X, £;) = 0, which implies h'(X,€) = 0.

(ii) Assume that degL; > 0, then degflq > 4 and ni = degf = > degl; >
rdeg L1 > 4r implies n > r, a contradiction. O

3.6 Lemma Let X be a curve of genus 1 and index i over k. Let £ be an indecomposable

vector bundle on X of rank r and degree d = ir. Then one of the following holds:

(i) € has a mazimal splitting (L1,...,L,) such that L; > L1 = Ox forj=2,...,r.

13



(ii) € has a mazimal splitting (L, ..., L) with deg L = i. In particular, degs € {0,i} for
all nonzero global sections s € H°(X,E), and h°(X,E) = ir. Furthermore, det€ = L.

Proof By 2.9 there is a maximal splitting (£4,...,L,) for € such that £; > £; > Ox.
Again, if deg L1 = 0 then £; & Ox. Otherwise, deg L1 > i and ir = deg€ = XT: deg L; >

j=1
rdeg L1 > ir yields deg £; = ¢, and deg £; > 7 implies that degL; =4, j = 2,...,7. As

in the proof of 3.4, we get £; = L, for j = 2,...,r. Moreover, since deg £L; > 0 we have
hY(X,L;) =0 for j=1,...,7 and thus h'(X,€&) = 0. O
3.7 Corollary Let X be a curve of genus 1 and index 1 over k. Let £ be a vector bundle
on X of rank r and degree r.
(a) If € is indecomposable then h'(X,E) = 0 and one of the following is true:
(i) € has a mazimal splitting (L1,..., L) with L; > L1 = Ox for j =2,...,r, and the
map

a(P): HY(X,€) ® k(P) — Ep @ k(P)

is injective, for each k-rational point P € X.
(ii) £ has a mazimal splitting (L, ..., L) such that deg L = 1. In particular, then degs < 1
for all nonzero global sections s € H°(X,€), and det £ = L".
(b) Let k' /k be a field extension, X':= X X k', and let £&':= € ® Ox be indecomposable.
Then one of the following is true:
(i) €' has a mazimal splitting (S1,...,Sy) such that S; > Sy = Ox: for j =2,...,r, and
the map

ap: H'(X,E)® Opx — &p

is injective, for each k'-rational point P € X.
(i) E' has a mazimal splitting (S, ...,S) such that degS = 1. In particular, then deg s < 1
for all nonzero global sections s € H*(X',£"), and det £ = S". (This happens for instance,
if € already has such a splitting.)
(c) Let € be absolutely indecomposable. Then € has a maximal splitting (S,...,S) with
deg S = 1. In particular, degs < 1 for all nonzero global sections s € H°(X, ).
In all these cases, the evaluation map o: HO(X,E) ® Ox — & itself is not injective.
Proof (a) is 3.6 for 4 = 1. In particular, £; & Ox and hence degs = 0 for each nonzero
global section s € H°(X, £) implies that a(P): HY(X,€) ® k(P) — Ep ® k(P) is injective
for each k-rational point P € X, and thus h%(X,£) = r. (However, « itself cannot be
injective, otherwise & =2 Og) is decomposable.)

(b) Apply 3.6 to the vector bundle £ on X'.

(c) If £ is absolutely indecomposable, the assertion follows from 3.4, or 3.6. O

14



This implies: Let X be a curve of genus 1 with a rational point, and £ an indecom-
posable vector bundle on X with » = rank £ = deg&. Let X’ = X X k' be a base change,
such that £ = £ ® Ox- is still indecomposable. Let (L4, ..., L,) be a maximal splitting of
&' of the type described in 3.2 (b) (i) or (b) (ii). Let (Lq,..., L) be a maximal splitting of
Ewith £; > L1 > Ox fori=2,...,r, then (£},...,L]) with £}: = £; ® Ox is a splitting
of &' and deg L1 > deg L] = deg L;. If degﬁl = 0, then deg £; = 0 and (£4,...,L,) has
to be of the type described in 3.2 (a)(i).

Moreover: For an indecomposable vector bundle £ on X of rank r and degree r, either
degs = 0 for each nonzero global section s € H%(X, ) or there exists a nonzero global
section 0 # s € H(X, €) of (maximal) degree 1. If £ is even absolutely indecomposable,

then there always exists a nonzero global section of maximal degree 1 in H°(X, £).

3.8 Lemma Let £ € Q(r,d) with d > 0. Then
d it d>0

i m=h"(X,€) = {
¥ ( ) Oorl if d=0
(i1) For d < r, the evaluation map o: H*(X,€) ® Ox — & is injective. Thus ngm)
15 a subbundle of £, and G:= S/O%m) € Q(r — m,d) is absolutely indecomposable with
hO(X,G) = m.

This is an immediate consequence from [At], Lemma 15 (see also 3.2(iii)), since £@ O«
is indecomposable. For a vector bundle on X which is indecomposable, but not necessarily

absolutely indecomposable, a weaker version of part (i) is obtained:

3.9 Lemma Let X be a curve of genus 1 and index i over k. Let € € Q(r,d) with d > 0,
and m: = h9(X, €)

(a) Let i = 1. Then h°(X,E)=d ifd > r andd < h°(X,€) < r if 0 < d < r. In particular,
& is not absolutely indecomposable if d =0 and m # 0,1, or if 0 < d < r and m # d.

(b) Let i > 1. Then h%(X,€) = d if d > ir and if there exists a nonzero global section
s € HY(X, &) of degree greater or equal toi. Let 0 < d < ir, or letd =0 and m # 0. Then
deg s = 0 for all nonzero global sections s € H°(X, £).

(c) Let i > 1. Let k'/k be a field extension such that £':= € @ Ox: is indecomposable on
X':= X Xy k', and such that X (k') #0. Then h°(X, &) =d ifd>r andd < h°(X,E) <r
if 0<d<r.

Proof (a) Assume i = 1. For d > r, h%(X,€) = d by 3.5 (i), for d = r, h°(X,€) = d by
Lemma 3.7 (a). Now let 0 < d < r. If d = 0 and m = h°(X,€) = 0 there is nothing to
prove. Let either be d = 0 and m > 0, or let d > 0 and thus also m > 0. Then there exists
a maximal splitting (L4,..., L) of £ such that £; > £; = Ox (3.5), and a(P) is injective
for each k-rational point P € X implying m < r. The last part of (a) follows from [At],

15



Lemma 15.

(b) Let 4 > 1 and d > ir. Again there is a maximal splitting (L4,...,L,) of £ such
that £; > L1 > Ox for j = 2,...,r. If deg £y = 0 then degs = 0 for all nonzero global
sections s € H%(X, ). If deg L1 > 0 then deg £; > 0 implies h' (X, L;) = 0 for all j, and
hence also h'(X,€) = 0. Let 0 < d < ir. For d = 0 and m = 0 there is nothing to prove,
thus let either be d = 0 and m # 0, or d > 0 and hence m = h°(X,€) > 0. Again there
exists a maximal splitting (L1, ...,L,) such that £; > £; 2 Ox for j =2,...,7.

(¢) Apply (i) to the vector bundle £ on X' = X xj k' O
3.10 Corollary Let X be a curve of genus 1 and index i > 1 over k. Let £ € Q(r,d). Let
d>randh(X,E) > d, orlet0 < d <r and h®(X,E) > r. The vector bundle £':= EQROx:
decomposes over X':= X Xy k', for every field extension k' /k with X (k") # 0.

Let £ be a vector bundle on the curve X of genus 1 with nontrivial global sections.

There exists an extension
(E) 0 — H*X, )@ Ox — M —E — 0

which corresponds to the identity on H°(X, ) (cf. [AEJ 1], p.1338 for the explicit con-
struction). Define m:= h%(X,£). If £ € Q(r',d) then (E) is nontrivial and therefore
O&m)—complete. In particular, then deg& = deg M and h°(X,&) = h%(X, M) by [At],
Lemma 14, also rank M = rank £ + m. By [At], Lemma 13*, the vector bundle M
is uniquely determined up to isomorphism, since h'(X,€Y) = m. (By Serre-duality,
hY(X,EY) = h(X,E) =m.)

3.11 Proposition (i) Let £ € Q(r',d) with d > 0, and in case d = 0 assume m =
RO(X,E) # 0. Then there exists a vector bundle M € Q(r,d), which is unique up to

isomorphism, given by the extension
0 — H (X, &) Ox — M — & —0

where r =71’ +m and

d if d>0,
{ 1 if d=0.
(i1) Let £ € Q(r',d) with d > 0 and in case d = 0 assume m = h°(X,E) # 0. Then there
exists a vector bundle M € Q(r, d) which is uniquely determined up to isomorphism, given

by the extension
0— H' (X, )@ Ox — M — & — 0

where r =1’ +m. If X has a k-rational point, then
m=d if d>r,

d<m<y¢ if 0<d<r.
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In particular, £ is not absolutely indecomposable if d = 0 and m # 0,1, or if 0 < d < 7'
and m # d.

Proof In both cases (i) and (ii) there exists a vector bundle M of degree d and rank

r = r’ + m which is uniquely determined up to isomorphism and given by the extension
(E) 0— H' (X, )@ O0x — M — & — 0.

Moreover, h®(X,€) = m = h%(X,M). By 3.8, m =difd > 0and m = 1 if d = 0 for
£ € Q(r',d) in case (i). By 3.9, in case (ii) we conclude that for X (k) # 0, m =d if d > 7’
andd<m<r'ifo<d<r.
It remains to show that M € Q(r,d) in (i), respectively M € (r,d) in (ii): This is
proved analogously as in [At], Lemma 16. or by directly applying [At], Lemma 16.
]

This generalizes [At], Lemma 16. Both in [T], Satz 6.2 and in [AEJ1|, Proposition
4.1 (i), the following result was proved for a curve X of genus 1 and index 1, over a perfect
base field k. These assumptions are not necessary. Imitating the induction on r from the
proof of [At], Theorem 5(i) yields:

3.12 Theorem There exists a vector bundle F, € Q(r,0) which is unique up to isomor-

phism, such that H°(X, F,) # 0. There exists an exact sequence

0—0x —F, — Fr—1 — 0.

Recall the following: Any k-homomorphism of fields o:¢; — £5 induces a morphism
Xoi= X X by — X X 41 =:X;1. Let £ be a vector bundle on X Xxg ¢1, then °&; =
&1 Qox, Ox, denotes the pullback of & to Xy. For £; = ¢5 this pullback is a conjugate of
&1

Part (ii) of [At], Theorem 5 is generalized in [AEJ1], 4.1 (ii), for curves of genus 1 and

index 1 over a perfect base field k, using a descent argument. This argument still works.
Let E/k be the Jacobian of X/k. We obtain

3.13 Theorem Let X be a curve of genus 1 over a perfect field k, with index ¢ and period
q. Let £ be an absolutely indecomposable vector bundle of rank r and degree 0 on X.
Additionally, let

(i) X satisfy H°(Pic®X) = Pic®X, or

(ii) let  and i be coprime, or

(ii) let r and q be coprime.

17



Then there is a line bundle S of degree 0 on X which is unique up to isomorphism, such
that £ =2 S ® F,.. In particular, £ contains S as a subbundle, and det £ = S".

Proof Take £ € Q(r,0). By [At], Theorem 5(ii) it follows that £ = £ ® O =< L& F, for a
line bundle £ of degree 0 on X, which is unique up to isomorphism. Thus the isomorphism
class of £ is G-invariant. In case H°(X,Pic’X) 2= Pic’X by assumption (i), £ is defined
over X, and £ = § ®o, Ox for some line bundle § on X implying the assertion. Now
assume (ii). Obviously, det € = L" is a line bundle defined over X, but so is £?, since the
cokernel of the injection PicX — H°(Pic(X)) is killed by the index 4 ([PoSch], 3.1). Let
L~™ denote LVY™, for any integer m > 0. This means that £ is defined over X if there
exists integers a, b such that ai + br = 1, in other words, if index and rank are coprime, as
in (ii). If (iii) holds we apply the same argument as in (ii), using that the cokernel of the
injection Pic®X — HO(Pic®X) is killed by the period of X ([PoSch], 3.2). O

This shows that in the situation of 3.13, every absolutely indecomposable vector bundle

th_root of unity.

of rank r and degree 0 has a determinant which is an r

At this point, it does not seem possible to directly adapt Atiyah’s proof of Theorem
5(ii), since this would mean that we need a stronger version of 3.6, which actually excludes
case (i) in case the vector bundle is absolutely indecomposable of rank r and degree ir.

Then we could omit the hypothesis (i) in 3.13 and also that k& needs to be perfect.

Note that the assumption in Theorem 3.13 holds in particular if X satisfies:
(%) For every finite Galois extension k' /k with Galois group G' = Gal(k'/k) there is
an isomorphism
Pic% (X x k') & Pic(X).

This implies that oPicX = oPicE if E/k is the Jacobian of X/k. In particular, (x) is
satisfied if H'(Princ(X°P)) = 0 where X5P = X x k%P, (H?(A) is used as an abbreviation
for the cohomology group H*(G, A) where A is a G-group, G = Gal(k*®®/k).) Moreover,

there is an exact sequence
0 — PicX — H°(Pic(X®P)) — Brk — Br(X) — H'(PicX®P) — H?(k5PX)

with Br k = H?(k*®P*) the Brauer group of k, and BrX the cohomological Brauer group of
X (the kernel of the canonical map H?(kP(X)%) — H?(Div(X®®P)), since X is a curve).

The cokernel of the injection PicX — H?(PicX®P) is killed by the index i of X
over k ([Po Sch], 3.1). Thus given any line bundle £ on X*°° whose isomorphism class is
G-invariant, but which is not defined over X, then £ is an element of ;Pic(X®°P), since
LR QLY Oxsep (i-times).
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3.14 Example (i) ([T], p.93). The curve X/Q defined by 2y% = z* — 17 has the Jacobian
E/Q given by the equation y? = z3 + 17z. Reichardt [R] proved that X(Q) = 0 (but
X(Q,) # 0 for all Q). Here, H*(PrincX®P) = 0 and thus sPicX & Z, and ind(X) = 2.

(i) ([Si], p.312). The curve E/Q given by the equation y? = z(x — 2)(z + 2) is the
Jacobian of the homogeneous spaces Cy/Q defined by

Cy/Q: dw? = d? + 24,

with d € Q(S,2) and {£1,+2} representatives for the cosets in Q(S,2). For d < 0,
Cd(R) = @, SO

C_1/Rw?=-2*-1
is a curve of genus 1 and index 2. Since Br(R(z,y)/R) = {1,(—1,—1)r} we know that
2PiCX = Z2 X Z2.
3.15 Corollary Let X be a curve of genus 1 over a perfect field k. Then

oPicX — {€ € Q(r,0) | € a selfdual vector bundle on X}
Lr— LQF,

is a bijective map, provided that the conditions (i), (ii) or (iii) from 3.13 are satisfied. In
particular, for any rank r (resp., for any rank coprime to the index, or the period) there
are at most 4 (and at least 1) isomorphism classes of selfdual absolutely indecomposable

vector bundles on X.

The proof is straightforward, the case of a perfect base field k where X (k) # () in 3.15
was already treated in [T], Satz 7.9.

3.16 Corollary ([At], Cor. 1,2, Lemma 17, 18) Let X be a curve over a perfect field k
such that HO(Pic®X) = Pic® X, unless stated otherwise.
(i) Fyr is a selfdual vector bundle on X .

(ii) For all s < r we have exact sequences
0 —Fs — F — Fr—s — 0.

(111) h°(X, F, ® Fs) = min(r, s)
(iv) For a line bundle L on X, h°(X, L ® F, ® Fs) = 0 unless h°(X, L) # 0.
min(r,s)
(v) Fr@Fs= @ Fr;, where) rj =rs.
Jj=1 J

Note that 3.16 (i), (iii) and (iv) do not need 3.13 in the proofs and are still valid for
any curve of genus 1. However, until the end of this paragraph assume that k is perfect,
and that the curve X satisfies H°(Pic®X) = Pic®X.
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Let V(X) be the set of isomorphism classes of vector bundles on X. This is a free
abelian semi-group with respect to @, and can be embedded into a free abelian group V(X ).
By extending the tensor product operation ® to V(X) we obtain a unital commutative
ring with the unit element given by the class of Ox. Let F' be the subset of V:= V(X)
generated by the classes f,. of the bundles F,, r > 1, with respect to @, and F Dbe the
corresponding subgroup of V: = V(X ). F' is a subring of V. Tt is a commutative ring with
a unit element satisfying conditions (a) and (b) in [At], p. 436. The structure of F is
not completely determined by (a) and (b). The following additional hypothesis is needed,
which depends on the characteristic of the base field k£ of X:

(Hp): f2 =14 fr,.
71=2
If F is a ring where (H,) holds in addition to (a) and (b), for all 7 > 1, then F' is uniquely

determined up to isomorphism and its multiplicative structure is given by

f?"fs:fr—s+1+fr—s+3+"'+fr+s_1 (7‘28).

All this was already observed by Atiyah. We do reproduce the arguments here, since they
are independent of the chosen base field. We only remark that F,. ® F,. =2 Ox & G for all
r if char k = 0, and for all r coprime to char kK = p > 0, where Gp is the subspace of trace
zero endomorphisms of End(F,)p for all P € X ([At], Corollary to Lemma 19). Hence
(H,) is true for all » > 1 if the characteristic of & is zero, and we obtain [At]. Theorem 8

for arbitrary curves of genus 1 over fields of characteristic zero:

3.17 Theorem. Let X be a curve of genus 1 and index i over a field of characteristic
zero such that H°(Pic®X) = Pic®X. Let F' denote the subring of V(X) generated by the
isomorphism classes of the vector bundles F,., r > 1. Then Fisa free abelian group

generated by the classes of the F,., r > 1, and we have
F’I‘®FS gfr—s-{—l@fr_3+3@"'@fr+s_1

forr > s.

3.18 Theorem ([At], Theorem 9). Let X be a curve of genus 1 and index i over a field of
characteristic zero. Then F, & Sr_l(}"z) forr > 1, where S™ denotes the n-th symmetric

product.

This follows from the formula given in the theorem before, but also by a descent argu-

ment from Atiyah’s result. Using the latter way of proof implies that the assumption
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H°(Pic’X) = Pic’X is superfluous here. Otherwise the proofs are exactly as given in
[At], since at no point in his arguments it becomes crucial that the base field of X is

algebraically closed, or that the index of X needs to be 1.

4. Admissible pairs and absolutely indecomposable vector bundles of coprime

rank and degree

Let h be the greatest common divisor of r and d. In [At], Theorem 6, a bijective map
wy g: Q(h, 0) — Q(r, d)

is defined inductively, for k£ algebraically closed. By generalizing the inductive definition
of the map w, 4 given in the proof for a curve X over an arbitrary field k£ which has genus

1 and index ¢ > 1, the following abstract algorithm is obtained:

Start with a pair (r, d) of positive integers, and a fixed integer ¢ which divides d. Then
repeatedly use the following two steps starting with do: = d, and r = ¢1do + r1(j > 0):
L. doj = iq2jyarajt+1 + d2jyo With —[%J < dgjya < L"?%J where |y| denotes the
integral part of y. If daj;2 < 0 continue with —dy; 9 instead.
2. roj41 = q2j4+3d2j42+ 7243 With 0 < rgj413 < daj42 provided that dgji2 # 0, otherwise

stop at the pair (rgj41,d2j12)-

It is allowed to use an empty step where ga;42 Tesp. ¢o;43 is 0. At each step, ro;11
and |dy;| are uniquely determined. The algorithm either stops at step 2. in which case
dg; = 0, or it goes on indefinitely. In any case we have gcd(r2j+1,d25) = ged(r, d), so if
the procedure stops with da; = 0, it stops at the pair (k,0) with h: = gcd(r, d). One easily
sees by induction that i/dgj for all 7 > 0. Consequently, r2;41 =7 mod 7 for all j > 0.
Hence, if the procedure stops with dy; = 0 we have h = r9;_1 = r mod ¢. Therefore,
for h # r mod ¢ (which never happens for i = 2) the procedure will continue indefinitely.
Moreover, if i/r then dy; = d mod i%. So if ¢/r but >/ d the procedure will not stop.
More generally, it will not stop if i/ %.

T2 41—

Since r2j11 < |daj| and |dajyo] < [ 55 1|, the sequence (r,d, 1, |ds|, 73, |dal,...) is

non-increasing for ¢ < 2.
A pair (r, d) of integers with r > 1 is called admissible with respect to i, if the algorithm
described above stops at step 2. with the pair (h,0) where h denotes the greatest common

divisor of r and d.

Let 7 = 2 which is the easiest nontrivial case. Suppose 7341 = |da;j|. Then do; =

2q2j4272j+1 + doj42 with the given bound on d;;o implies gaj42 = 0 and |dgjy2| = |d2;].
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We enter a loop, and thus stop at the pair (rejy1,|ds;|) with 7941 = |d2;|. Suppose
|d2jr2| = L“"?%J = r9j+1. Then ryj11 = gaj43dajr2 + 72543 with the given bound on
T9j+3 implies gaj43 = 0, hence 79541 = r2;43. Again we enter a loop, and stop at the pair
(roj+1, [d2j42]) With 7o = |dajpal.

4.1 Theorem Let X be a curve of genus 1 and index i over k. Fizr a line bundle A on X

of degree i. For any admissible pair (r,d) with respect to i, A determines a unique bijection
Wr,d: ﬁx(h, 0) — QX (T‘, d)

with h the greatest common divisor of r and d, which is inductively defined as follows:
(Z) wr,o = ld,
(i) wrayir(€) = wpa(€) ® A,

(ii) for 0 < d < min{r, ||} there is an exact sequence

0— og? — wr (&) — wr_ga(£) — 0,
(i) for d < 0,
wr,d(€) = wr,—a(€)".

Moreover,

det w, 4(€) = det £ @ AV

if the number of steps of type (iv) used to define wy 4 is even, and
det wy, 4(€) = det £V © AV

otherwise.

Proof Fix a line bundle A on X of degree i. There is a bijection

Q(r,d) — Q(r,d + ir)
E—EQA,

or more generally, there exists a bijection between Q(r, d) and Q(r, e) for d = c(ir) +e with
—|#2l] <e < |Z]. Let 0 < d < r. By 3.8, for each £ € Q(r,d) there is a short exact
sequence

0— O&?) — & —G—0

such that G € Q(r — d,d). Conversely, by 3.11 there is a vector bundle & € Q(r, d)
uniquely determined up to isomorphism, which extends G € Q(r — d, d) by (’)g). Hence
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there is a bijection between Q(r,d) and Q(r — d,d), or more generally, between Q(r, d)
and Q(b,d), for r = ad +b, 0 < b < d. For d < 0 we use the canonical bijection
Q(r,d) — Q(r, —d), £ — £V. Using the above “euclidean” algorithm on an admissible pair
(r,d) with respect to i thus corresponds to constructing a bijection w, 4 between Q(h,0)
and Q(r,d) defined inductively by steps (i), (ii), (iii) and (iv). The formula for det& is

proved by a straightforward induction on r and d. O

Let Pic?X denote the set of line bundles on X of degree d. Let £ € PicX. For a
positive integer m, let L=™ denote the m-fold tensor product of the dual bundle of L.

4.2 Theorem Let X be a curve of genus 1 and index ¢ over k. Let k be perfect and
assume that H°(Pic’X) =2 Pic® X, or that i and r are coprime in the following. Fiz a point
Py € X of degree i. For any admissible pair (r,d) with respect to i there is a canonical
bijection (which depends on the choice of Py) between the set of isomorphism classes Q(r, d)
of absolutely indecomposable vector bundles of rank r and degree d on X and the set Pic® X
which identifies Q(r,d) and Pic®X in such a way that the map

det: Q(r,d) — Pic?X

corresponds to the map

G1: Pic®X — Pic’X
L—L®---QL (h — times)

if the number of times step (iv) is used in the definition of w, 4 is even, or to the map

Gs:Pic’ X — Pic®X
L—LV®---LY

if the number of times step (iv) is used in the definition of w,q is odd. Again, h is the

greatest common divisor of r and d.

Proof Define A:= L(P,). By 3.13 and the above theorem there exists a bijective map
Pic’X — Q(h,0) — Q(r, d).

Let us call this map w = @, 4. Then det @, 4(L) = L"® A% for any line bundle £ € Pic® X,
or det @, 4(L) = L7 ® A%, depending on the number of times step (iv) is used in the
definition of w;. 4. Therefore the diagram made of the two maps w and det,

Pic’X — Q(h,0) — Pic?X
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and the maps G or G2 (depending on the situation) and @ g4,
Pic’X — Pic®X — Pic?X

commutes. ]

Let F/k be the Jacobian of X/k. The special case where the curve has index 2 is easy

to understand:

4.3 Corollary Let X be a curve of genus 1 and index 2 over a perfect field k. Let h be

the greatest common divisor of the integers r > 0 and d. If r is odd, there is a bijection
@ q: Pic’ X — Q(r, d).

4.4 Theorem Let X be a curve of genus 1 and index i over a perfect field k such that
H°(Pic’X) = Pic®X. For any admissible pair (r,d) with respect to i there is a canonical
bijection between the set Q(r,d) and the set E(k) of k-rational points on E. Via this
bijection, Q(r,d) and E(k) are identified in such a way that the map

Q(r,d) — Pic?X,
Er—deté&

corresponds to the isogeny “multiplication by h”

[h]: E(k) — E(k),
P—[hP:=P+---+P (h — times),

or to the isogeny “multiplication by —h”

[—h]: E(k) — E(k),
Pv+—— [-h|P:=—-P—---—P (h — times),

where h is the greatest common divisor of r and d.

Proof The summation map sum : DivlX — E® S n; P; — > [n;](P; — Py) induces an
isomorphism
HO(X®P Pic®(X5P)) = E(k).

Define A:= L(Pp). Then A determines a bijection between Pic®X and Q(r,d) by 3.13
and 4.1 for any admissible pair (r,d) and the assertion follows from the assumption that
Pic®X = HO(XSP PicO(X5°P)). O
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An obvious question is when a given pair (7, d) is admissible with respect to i. Using
a short MAPLE-program, it is very easy to check which (r, d) are admissible with respect
to a given integer i. Plotting the admissible pairs (r,d) for small 4, it is also immediately
obvious, that the slope p = g of a vector bundle of rank r and degree d decides whether it
is admissible or not. This can also be verified by a straightforward calculation.

For i = 1 we obtain the usual euclidean algorithm applied to the pair (r,d), with the
unusual “twist” that at some point negative “d-entries” are reversed into positive ones.
Hence for 7 = 1, our inductive definition of w, 4 is slightly different from the inductive
definition of the map given in [At], Theorem 6. Atiyah did not use the bijective map
Q(r,d) — Q(r,—d) and also assumed 0 < d < r w.lo.g., instead of —|"5t| < d < |%]

which is used in the version here. In both versions, however, for ¢ = 1 it is obvious that any

pair (r,d) is “admissible”. Thus we have reproved the classical result (for elliptic curves
over algebraically closed fields) for elliptic curves with a rational point over any base field.
That is, any fixed line bundle A on X of degree 1 determines a bijection

wr,diﬁx(h, 0) — ﬁx(T, d),

for any curve X/k of genus 1 with a rational point, where h = ged(r,d). In particular, we
obtain a bijection between the set Qx(r,d) and the set X (k) of k-rational points on X.
For any pair (r,d) with r and d coprime (r > 0), the map given by

Qx(r,d) — Pic?X
Er—deté

is bijective ([At], Corollary to Theorem 7). An immediate consequence (proved by descent)

1S

4.5 Lemma Suppose that k is perfect. Let r and d be coprime. Then any absolutely
indecomposable vector bundle £ on X of rank r and degree d is uniquely determined (up

to isomorphism) by its determinant.

That means the map Qx (r,d) — Pic?X, £ — det £, is always injective provided that
r and d are coprime and k is a perfect base field. Under certain stronger assumptions, the
determinant induces a bijective map from Qx (r,d) to Pic?X in our more general setting

as well: By descent we get for instance

4.6 Lemma Let k be a perfect field, and X be a curve of genus 1 and index i over k
satisfying HO(Pic®X) = Pic®X. Let (r,d) be an admissible pair such that v and d are
coprime. Then

det: Qx (r,d) — Pic?X
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s a bijective map.

Proof It remains to show surjectivity: Given Q € Pic?X, we can find an element G €
Q= (r,d) such that detG = Q. Since °Q = @ for all ¢ € G, we conclude that det(’G) =
det G for all 0 € G, and hence °G = G for all ¢ € G using the injectivity of the map det.
Hence, by 4.11 below, G is defined over X, provided that (r,d) is an admissible pair. ]

With the same argument one can also prove that det: Q(r,d) — Pic?X is bijective,
for an admissible pair (r,d) of coprime integers, in case the Brauer group Br(k) of the
(perfect) base field is trivial (then ?G = G for all o € G also implies that G is defined over
X, since v(G) € Br(k) is trivial, cf. [AEJ1]). A straightforward proof without descent
shows that one can again drop the assumptions that H°(X,Pic®X) = Pic%X in 4.6, and

one obtains the following as a direct consequence of Proposition 4.2:

4.7 Corollary Let X be a curve of genus 1 and index ¢ over a perfect field k. Let r and
d be coprime, i.e. h = 1. Then the map

det: Q(r,d) — Pic?X

is bijective, for any admissible pair (r,d) with respect to i. In particular, it is bijective for
any pair (r,d), if X has index 1.

As in [At], for any admissible pair (r, d) with respect to i, denote a vector bundle on X
which is isomorphic to wy q(Fr) by £4(r,d). In particular, that means that £4(h,0) = Fp,.
4.8 Proposition Let k be perfect. Let r and d be coprime, and let (r,d) be an admissible
pair with respect to the index i of the curve X over k of genus 1.

(1) Ea(r,d) @ L = E(r,d) if and only if LT = Ox, for any L € Pic®X.

(i1) Ea(r,d)Y = E4(r, —d).

(iii) Suppose that £ € Q(r,d) such that £ 2 w, 4(S ® Fp,) with a line bundle S of degree 0
such that S is isomorphic to the r** power of some line bundle on X. Then & =2 E4(r,d)RL
for a line bundle L on X of degree 0.

Proof (i) £4(r,d) ® L =2 E4(r,d) if and only if det(E4(r,d) @ L) = det E4(r,d) by the
above corollary. This however is equivalent to detE4(r,d) @ L™ = det E4(r,d), and we
obtain the assertion.

(ii) det E4(r, d)V = (det £ ® AY?)Y =2 A=t = det E4(r, —d).

(iii) By 4.1, det £ 2 S® AY? or det £ = SV ® A¥%. Furthermore, for any line bundle
L on X of degree 0 it is known that det(£4(r,d) ® £) = A%¥* @ L7. Therefore it follows
that £ 2 EA(r,d) @ L or € 2 E»(r,d) @ LY if S LT (4.7). O

Atiyah ([At], Corollary to Thm.7) thus proves that every vector bundle £ € Q(r, d) of

coprime rank and degree is isomorphic to a bundle € 4(r,d) ® L, for a suitable line bundle
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L of degree 0, provided that the base field k is algebraically closed. For curves of genus 1
over arbitrary base fields this description does not hold in general: Let £ be a number
field. By the Mordell-Weil Theorem (cf. for instance [Si], p.189), the group E(k) is finitely

th voots. In

generated, hence not divisible, and it contains elements which do not have r
our setting, this means that there are vector bundles £ € Q(r,d) of coprime rank and
degree, which cannot be expressed as the tensor product of £4(r,d) with some suitable

line bundle.

4.9 Corollary Let k = R. Suppose that £ is an absolutely indecomposable vector bundle
on X of odd rank and coprime rank and degree. Then €& = E4(r,d) @ L for some line
bundle L on X of degree 0.

Proof For k = R, the index of X is either 1 or 2. Moreover, in case ¢ = 2 any pair (7, d)
with r odd is admissible (4.3). Also, any line bundle £ of degree 0 has an r** root ([SiT],
p.42). 0
4.10 Proposition Let X be a curve of genus 1 and index i over k. Let Ay be a fized line
bundle on X of degree i. Let

w: = wr,d: ﬁXsep (h, O) — ﬁXsep (‘T', d)

be the bijection defined in 4.1 which is determined by A:= Ay ® Oxsen, for any admis-
sible pair (r,d) with respect to i, h the greatest common divisor of v and d. Let £ be an
indecomposable vector bundle on X5 of rank h and degree 0.

(a) w(?E) = w(€), for all o0 € G = Gal(k*P k).

(b) € is defined over X if and only if w(E) is defined over X.

This generalizes [T], 6.7 and 6.8 to curves of genus 1 with arbitrary index.

Proof Both (a) and (b) are proved by induction.
(a) We have w,(°E) = € =2 w,o(£). Furthermore, if w, 4(°€) &£ “w, 4(€) then
7 (wWrdtir(€)) 2 wra(?E) ® A2 wpa(°E) ® A= wy grir(°E) since A= 7A. For 0 <d <

min{r, | “>1]} =: S,, assuming w,_q,4(°€) = 7 (w,—a,q4(€)) the short exact sequence

0— oggi)ep — wr d(€) — wr_qg,4(€) — 0,
yields the short exact sequences
0— 0%, — (W a(€)) — wr_a,4(°E) — 0

and

0— Of,?s)ep — wr d(78) — wr_q,qa(°E) — 0.
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It follows that 7 (wy.4(£)) 2 wy a(°E). For d < 0, wy 4(7E) 2wy _a(7E)Y = 7 (wyp,—a(E)Y)
7 (@ra(E)).

(b) A bundle £ of rank h and degree 0 is defined over X if and only if w, o(£) =€ is
defined over X. Since A is defined over X, we know that wy g1,(€) = wy, 4(€) ® A is defined
over X if and only if w, 4(€) is defined over X, which by induction hypothesis is the case
if and only if £ is defined over X. For 0 < d < S, consider the short exact sequence

0— O, — wra(E) — wr—_q.a(€) — 0.

By induction hypothesis, £ is defined over X if and only if w,_q4(E) is defined over X,
that means wy,_4.4(&) = & ®o, Oxser for a suitable vector bundle & on X. By 3.11 there
is a unique absolutely indecomposable vector bundle Gy € Qx(r,d) such that there is a

short exact sequence

0—>0§§”—>g0—>50—>0

and obviously, Go ® Gxser =2 wy q(€). Thus, wy q(€) is defined over X. Conversely, if wy 4(&)
is defined over X, then a similar argument using 3.8 implies that also w,_44(€) is defined
over X and therefore £ is, too. It remains to check what happens in (iv), however, this is

straightforward, too. ]

For a proper scheme X over a perfect field k, [AEJ1], 3.7 gives a necessary and
sufficient condition for an indecomposable vector bundle £ on X, which is G-invariant, to
be defined over X: For any such £ there exists a pure indecomposable vector bundle M
on X, unique up to isomorphism, of type £ ([AEJ1], 3.4). Define v(£) to be the class of
the central simple k-algebra D(M): = End(M)/rad(End(M)) (where rad is the Jacobson
radical) in the Brauer group Br(k) of k. The bundle £ is defined over X if and only if
v(€) is trivial. As remarked in [AEJ1], 3.8, this does not sound like a practical criterium,
however, the authors proceed to point out a way to compute v(€) without first finding the
vector bundle M: They compute the cocycle which gives the class of y(€) in Br(k), thus
generalizing ([T], 4.14), which only studied the situation for curves.

If X/k is an elliptic curve with a rational point, every absolutely indecomposable
vector bundle £ on X which is invariant under the action of G is already defined over
X ([AEJ1], 4.2). This result is not true any more for the general situation where X/k is
a curve of genus 1 and index ¢ greater than 1. The following weaker version is obtained

instead:

4.11 Theorem Let X be a curve of genus 1 and index i over a perfect field k, satisfying
HO(Pic®(X3P)) = Pic®X. Let (r,d) be an admissible pair with respect to i. Then any
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G-invariant isomorphism class of an indecomposable vector bundle G € Q= (r,d) is defined

over X. In particular, v(G) is trivial.

Thus, here there are classes of vector bundles on X where G-invariance automatically
implies that the bundle is defined over X. We do not need to first compute D(M) directly

as above to check this.

Proof Let G € Qx(r,d) such that °G = G for all ¢ € G = Gal(k/k). There exists an
& € Q%(h,0) such that w, 4(€) = G. This implies that

1%

7G 2 "W g(€) 2 wra(°E) Zwra(€) 24,

and hence that £ has a G-invariant isomorphism class. By 3.13, £ = L ® F}, for a suitable
L € Pic®X, so this G-invariance implies that also £ 22 £ for all ¢ € G. Hence £ and also
L ® Fp, is defined over X, which is equivalent to G being defined over X by 4.10. 0

Using our previous results we can investigate indecomposable vector bundles as well.
We have to restrict ourselves to perfect base fields, since one of the main results we need has
only been proved in this setting: Let £ be a maximal field contained in D(M), where M is
an indecomposable vector bundle on X. Then there is an absolutely indecomposable vector
bundle N on Y = X X £ such that M = tr,/;(N) provided that k is perfect. In particular,
deg M = [£:k]deg N and rank M = [£: k] rank N ([AEJ1], 1.4, 1.8). Thus, if (r,d) =
(rank M, deg M) is an admissible pair with respect to 4, so is (r',d’) = (rank N, deg ),
and vice versa. This will be used repeatedly. If X is any complete regular curve over a
perfect field £k, then the invariant v defined above restricted to line bundles corresponds
to the map H°(PicX) — Br(k) in the well-known exact sequence

0 — PicX — H°(PicX) — Br(k) — Br(k(X))

([AEJ1], 3.9). Assuming that X has a rational point, it is proved in [AEJ1], 3.11 that
D(M) is a field, for any indecomposable vector bundle M on X, which decomposes into line
bundles over X. If X even is an elliptic curve, then D(M) is a field, for any indecomposable
vector bundle M on X ([T], 6.10 or [AEJ1], 4.3). If X is a curve of genus 1 without a

rational point, we use a similar argument as in the two results just mentioned:

4.12 Proposition Let X be a curve of genus 1 and index 1 over a perfect field k. Let M
be an indecomposable vector bundle on X. Then D(M) is a field if one of the following
holds:

(i) MM O« decomposes into the direct sum of line bundles on X, and

HO(X, PicX) = PicX.
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(ii) Br(k) = 0.
(iii) M has rank r and degree d with (r,d) an admissible pair with respect to i, and
HO(Pic®X) = Pic°X.

Proof First we follow the argument given in [AEJ1], 3.11: Let k¥’ = Z(M) be the center
of D(M) and put X':= X x; k'. Write M = try//;(G) for some vector bundle G on X'.
Then G is a direct summand of M and D(M) = D(G). Replace k by k¥’ and M by G and
assume that D(M) is central and hence M pure of a certain type, say of type N. Since
M is obviously G-invariant, so is A/. It remains to check if N is defined over X (resp. if
~v(N) is trivial in Br(k)) because of this. In that case it would follow that D(M) is a field.

(i) If M decomposes into the direct sum of line bundles then ' € PicX and is by
assumption defined over X.

(ii) If Br(k) = 0 then v(N) has to be trivial.

(iii) If N € Qx(r’,d’) with (r',d’) an admissible pair with respect to 4, then N is

defined over X by 4.11. However, since (r,d) is admissible by assumption, so is (r',d’). O

For a curve of genus 1 over a perfect field which has index 1, the naturality of Atiyah’s
classification implies that for an indecomposable vector bundle £ on X written as £ =
try/x(N) with A an absolutely indecomposable vector bundle on X = X xj, £, the field £
is the residue class field of the £-rational point corresponding to N under Atiyah’s original
classification ([AEJ1], 4.4). More generally:

4.14 Proposition Let X be a curve of genus 1 and index 1 over a perfect field k satisfying
HO(Pic®(X)) = Pic’X. Let & be an indecomposable vector bundle on X and € = try/(N)
for an absolutely indecomposable vector bundle N on' Y = X xy, £ such that N' € Qy (r,d)
where (r,d) is admissible with respect to indY = i'. Then £ = k(P) where P is the
(¢-rational) point of E/k corresponding to N under the classification theorem 4.4.

Proof By 4.4, we know that there is a bijection w between Qy(r,d) and E(f), since
H°(Pic’(Y)) = Pic’Y by assumption. Let P € E be the f-rational point corresponding to
N under this bijection. By [AEJ1], 1.9, A is not defined over Yy, for any proper separable
subextension £g of £/k. Thus k(P) £ £, since for k(P) £ k or k(P) £ ¢y we would obtain
the contradiction that N has to be defined over Yy already. O

It is an obvious question whether non-admissible pairs (r,d) play a special role, or
whether the method of proof presented here is just not powerful enough. Under some
additional assumption on the curve there indeed are no absolutely indecomposable vector
bundles over a curve of genus 1 with non-admissible rank and degree (r,d). The following

theorem is due to a conversation with J.P. Serre at the TMR-conference in Duisburg in
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September 2001. It generalizes Serre’s idea how to construct a counterexample of an

absolutely indecomposable bundle of rank and degree 2 for the index 2 case.

4.15 Theorem Let X be a curve of genus 1 and indext > 1 over a perfect field k, satisfying
H°(Pic(X)) = PicX.

(i) There is no absolutely indecomposable vector bundle on X of rank r and degree nr, for
any non-zero integer n which is not a multiple of the index 1.

(ii) There is no absolutely indecomposable vector bundle on X of rank r and degree d,

where the pair (r,d) is not admissible with respect to the index i.

Proof (i) Choose a line bundle S on X of degree n unequal to 0 such that n is not a
multiple of 4. By 3.13, there is a bijective map between the sets Pic’X and Q(r, nr) given
by L - F, ® L® S. Suppose there exists an absolutely indecomposable vector bundle
& on X of rank 7 and degree nr. Then £ = £ ® Ox 2 F, ® (L ® S) for a suitable line
bundle £ of degree 0, and N := L ® S € PicX has degree n. For every o € G, we have
Fr N = F,. @ N, hence

CNINY)® F, & F,.

However, deg(°NQNV) = 0 and thus N = N by uniqueness. By assumption, H°(PicX) =
PicX, so N must be defined over X, a contradiction, since it has degree n.

(ii) This is proved by induction on 7 and d analogously to the one used for 4.1. The
induction beginning is given by (i). The steps are as given in the algorithm at the beginning
of section 4. First there is a bijection between Q(r, d) and Q(r,d +ir) given by £ - £® A
for a fixed line bundle A on X of degree i. Obviously, Q(r,d) is an empty set if and only if
Q(r,d+ ir) is empty. The same argument applies to the bijection between the sets Q(r, d)
and Q(r —d, d), for every 0 < d < r, and of course the trivial one between Q(r, —d). Using
the ”euclidean algorithm” described at the beginning of section 4 on a non-admissible pair
(r,nr) inductively proves that Q(r,d) is an empty set, for each non-admissible pair with

respect to the index of X. ]

Using descent, Tillmann classifies the indecomposable vector bundles on a curve of
genus 1 and index 1 over a perfect base field. For any pair (r,d) of integers (r > 0) she
constructs a bijection a between the set of isomorphism classes (r, d) of indecomposable
vector bundles on X of rank r and degree d, and the set of points { P € X | deg P divides r},
where for a bundle £ € Q(r, d) the field D(€) is isomorphic to the residue class field k(P)
of the point P associated to £ under this map. Her map extends the bijection between

Q< (r,d) and X given by [At] canonically: For an absolutely indecomposable vector bundle

£ € Qr,d), a(f) ® Ox = @(€), where @ denotes Atiyah’s bijection from [At], Thm. 7.
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In our more general situation, there is a bijection between Q(r,d), for an admissible pair
(r,d) with respect to 4, and all the points of the Jacobian E/k of X/k of degree dividing r.

4.16 Proposition Let X be a curve of genus 1 and index i over a perfect field k such that
H°(Pic’X) = Pic®X. Fiz a line bundle A on X of degree i. For any admissible pair (r,d)

with respect to i there is a bijection
arq:Qr,d) — {P € E| deg P divides r},

where o, 4(€) is a k-rational point on E, for any absolutely indecomposable vector bundle
E on X, since D(E) = k(P).

Proof Let £ € Q(r,d). Since (r,d) is an admissible pair with respect to the index of X,
D(€) = k' is a field extension of k (4.12). Let G here denote the set of k'/k-conjugates
in k. By [AEJ1], 1.8 and 1.9, there exists an absolutely indecomposable vector bundle
N on X':= X xy k' such that £ = try /5 (N), and such that NV is not already defined on
Xo: = X Xy ko, for some proper subextension kg of k'/k. Put 7': = rank N and d’: = deg NV,
then (r/,d’) again is an admissible pair with respect to i. In particular, d = [k’: k]d’ and
r = [k':k]r’. Moreover, £ ® O% = @ °N where o runs through all the k’/k-conjugates,
and where N % "N for all ¢ # 7 ([T], 4.12). By 4.14, D(N) 2 k' & D(M) = k(P),
where P is the k’-rational point of E corresponding to N under the canonical bijection in
44,

‘Dr’,d’: E(kl) — ﬁXI (’I‘/, dl)

which is defined with the help of the line bundle A':= A ®p, Ox: as explained in 4.1.
Define o, 4(€):= P. The resulting map is well-defined, since the point P € E(k') is
independent of the choice of the indecomposable summand of £: Points corresponding to
two nonisomorphic summands °A and °N of £ are conjugated with respect to G (4.10
and [T], 4.12).

To show the surjectivity of oy 4, take a point P € E such that deg P divides r, and
put k':= k(P). Define r':= 75 and d":= ﬁ The pair (/,d’) is admissible with
respect to %, since it has the same slope as (r,d). Let N be the absolutely indecomposable
vector bundle on X’:= X xj k' which corresponds to P under the canonical bijection
(defined with the help of the line bundle A’ = A® Ox) from 4.4. Define &£: = try /,(N).
Then £ has rank r and degree d, and we claim that it is indeed indecomposable. Since
7P # TP ([T], 3.5.2) it follows that °A/ % TN as well, for all k¥'/k-conjugates o # 7 (4.9).
However, this already implies that £ is indecomposable, and that D(£) = D(N) ([AEJ1],

3.13). Since (7,d) is an admissible pair with respect to i, we obtain k£’ = k(P), and in
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particular that the degree of P divides r by 4.13, and that D(M) is a field by 4.11, indeed,
D(M) 2.

To check injectivity, assume that there are two vector bundles £, > € Q(r, d) such that
ara(E1) = oy a(E2). Let & = try, /(N;) with absolutely indecomposable vector bundles N;
on X;: = X Xy k;. In particular, then D(&;) = k;, for i = 1,2, and D(&;) & D(N7) = k(P1)
as well as D(&) & D(N2) & k(P;) by 4.13, where P; is the k;-rational point on E
corresponding to A; under the canonical bijection in 4.14 (defined with the help of the line
bundle A;:= A ® Oyx;), for i = 1,2. Now oy 4(€1) = @, q(€2) implies that P; and P, are
conjugated with respect to G, hence k; = ks. Now it follows easily that r’': = rank N7 =
rank Ny = ﬁ and d':= deg N7 = deg Ny = [k%:k]’ and that N; and N, are conjugated
with respect to G as well (4.10, [T], 4.12). ]
4.17 Corollary Let X be a curve of genus 1 over a perfect field k such that H°(Pic®X) =
Pic®X. There is a bijection

arq:Q(r,0) — {P € E| deg P divides r}

where o, ¢(€) is a k-rational point on the Jacobian E/k, for any absolutely indecomposable

vector bundle € on X.

5. Vector bundles of arbitrary admissible rank and degree

For a curve X of genus 1 over a field k and arbitrary index, we describe the structure of
the absolutely indecomposable vector bundles of rank r and degree d on X, where r and

d are coprime.

5.1 Lemma (cf. [At], Lemma 22) Let € € Q(r,d) withr and d coprime, (r,d) an admissible
pair with respect to the index 1 of X.

(a) If k is perfect and char k = p > 0 is coprime to r, then EndxE = P L; @ ..., where
the L; are line bundles on X satisfying L) = Ox. '

(b) If char k = 0, then 5ndyg decomposes into the direct sum of all line bundles on X
of order dividing v, and EndxE = Ox ® L1 @ --- D Ly D trg, /x(N1) @ --- @ try, /5 (Ns)
is the Krull-Schmidt decomposition of the endomorphism algebra of £, with the L; all the
line bundles on X satisfying LT = Ox, and with k;/k separable finite field extensions,
N; € PicX; for X;:= X Xy ki, and NT = Ox,. In particular, k; = k(P;) where P; is the
k;-rational point of the Jacobian E/k of X/k corresponding to N1 under the classification
Theorem 4.4., in case HO(Pic®X) = Pic®X.

Proof Each absolutely indecomposable vector bundle on X of coprime rank and degree

is uniquely determined by its determinant by 4.5. Therefore, £ = £ ® L;, for each line
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bundle £; € PicX satisfying £T = Ox. This implies that £¥Y @ £ 2 £V ® £ ® L; and thus

EndxE = EndxE ® L;. Since Endx& contains Ox as a direct summand ([At], Lemma

19), EndxE = @L; @ .... If char k = 0 there are exactly 72 line bundles over X of
i

order dividing r, so £ ndyz decomposes into the direct sum of these. Thus, we obtain the

Krull-Schmidt decomposition
EndxE =ZO0x ®LL® - ® L D try, g (N1) © -+ D try, /5 (Nos),

where k;/k is a separable finite field extension, N; € PicX;, X;: = X X k; is not defined
over some proper subextension of k;/k and satisfies N7 = Ox,. In particular, k; = k(P;)
with P; the k;-rational point of the Jacobian E corresponding to N; under the classification
Theorem 4.4., if H*(Pic%X) = Pic®X. O

For the following, recall that for index i = 2, every coprime pair (r,d) is admissible

by 4.3. The proof uses 3.17 and the above lemma and is analogous to the one in [At].

5.2 Proposition (cf. [At], Lemma 23) Let char k = 0. Let (r,d) be an admissible pair with
respect to i = ind X such that r and d are coprime. Then the vector bundle E4(r,d) @ Fp,

1s absolutely indecomposable of rank rh and degree hd, for any h > 1. In particular,
det(E4(r,d) ® Fp) = AT

5.3 Proposition (cf. [At], Lemma 24). Let char k = 0. Let (r,d) be an admissible pair

with respect to 1 = ind X such that r and d are coprime. Then

Ea(r,d) @ Fp, 2 Ea(rh,dh).

Like [At], Lemma 24, this is proved by double induction on r and h.

5.4 Corollary (cf. [At], Corollary 1). Let char k = 0. Let (r,d) be an admissible pair
with respect to i = ind X. Then E4(r,d) @ L = E4(r,d) for a line bundle L on X if and
only if L% = Ox, where h denotes the greatest common divisor of r and d.
Proof Put ' = ; and d' = %. By the last proposition, £E4(r,d) = E4(r',d') @ Fp. If
L 2 Ox then E4(r',d) @ L= EA(r',d') by 4.5, and E4(r,d) @ L = Ea(r, d).

Now assume that £4(r,d) @ L = E4(r,d). Then End(EA(r,d)) @ L = End(E(r,d))

and by 5.1,
End(E4(r,d)) =2 End(Ea(r',d)) ® EndwFr,

h
2(L1B - BL,D...)® @.7:23'—1
j=1
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with the £; all the line bundles on X satisfying EZT’ = Ox. Comparing the direct summands
of End(E4(r,d)) and End(E4(r, d)) ® L which are line bundles we obtain £ 2 £; for some 7,
hence £ Ox. O

5.5 Corollary (cf. [At], Corollary 2) Let char k = 0. Then E4(r,d)Y =2 E4(r, —d), for

any admissible pair (r,d) with respect to i = ind X.

Proof By 5.3, E4(r,d)Y = E4(r',d")V @ F, with h the greatest common divisor of r
and d, and r' = 7, d' = %. By 4.8, we know that E4(r',d')Y = E4(r',—d') and obtain
Ealr,d)Y 2 EA(r', —d") @ Fp, 2 E4(r, —d). ]
5.6 Proposition (cf. [At], Lemma 25) Let k = R. Let r — d be odd, and let r and d be
coprime (and hence (r,d) an admissible pair with respect to the index i of X if i = 2 by
4.3) with 0 < d < r, and let L € Pic®X. There exists an eract sequence

0 — O .y £4(rh,dh) ® £ — Ea(rh — dh,dh) ® 8 — 0

where S is any line bundle satisfying ST—% = L.

Proof Let h = 1. Since 0 < d < r, there exists a short exact sequence
(d) /
0 — 0y —&A(r,d)@L—E — 0

with & € Q(r — d, d) by 3.8. Moreover, £’ 2 E4(r —d,d) ® S for some S € Pic®X because
of kK = R (4.9). The remaining assertion then is obvious, and the induction beginning is

proved. Now let A > 1. The exact sequence
0—0x —F, — Fp_1—0
tensored with £ 4(r, d) with 7 and d as in the assumption yields the exact sequence
0—Ea(r,d) — Ealr,d) @ Fp, — E4(r,d) @ Frm1 — 0.
As in 5.3, write this sequence as
0—& —& — & —0

with &; € Q(rj,d;) and ro = rh, r3 = r(h — 1), dy = dh, d3 = d(h — 1). In particular,
0 < d; < r; as well. Now consider an analogous diagram as in 5.3. Tensor the middle row
with £. We obtain a new diagram of the same form in which G; and G3 are replaced by
G1®S and G3 ® S where S"~¢ = L" holds. As in the original proof of Atiyah, we can
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thus conclude that the midde term in the new bottom row must be isomorphic to Gs ® S,

proving the assertion. ]

5.7 Lemma (cf. [At], Lemma 26) Let k = R. Let (r,d) be an admissible pair with respect
to the inder i of X such that r —d is odd and 0 < d < 7, and consider & € Q(r,d). Then
there exists a line bundle L of degree zero such that £ =2 E4(r,d) ® L.

For ¢ = 2, this result contains no more information than what we already know from
4.9, where arbitrary admissible pairs with respect to ¢ of coprime rank and degree are

investigated.

Proof The case that d = 0 is covered already in 3.13. We proceed again by induction on

r, assuming that 0 < d < r. There exists an exact sequence
0—0¢ —e—e —0

with & € Q(r — d,d) by 3.8. By induction hypothesis, there is a line bundle S of degree
zero such that &' = £4(r —d,d) ® S. Let £ € Pic®X such that £7/? = S(=4/" with h the

greatest common divisor of r and d. By 5.6, there is an exact sequence
0 —>(’)§?) — Ep(r,d) @ L —E — 0

and we obtain £ 2 E4(r,d) ® L. O

Since E4(r,d) @ A= E4(r, d+ir) w.l.o.g. we only have to obtain results on admissible
pairs (r, d) with respect to ¢ satisfying 0 < d < ir, or admissible pairs satisfying — [%} <
d < [%} . Moreover, if we choose the latter range, using the fact that £4(r,d)Y = E4(r, —d)
allows us to even restrict ourselves to admissible pairs (r,d) with 0 < d < [%] This
shows that for ¢ = 2 the requirement 0 < d < r needed in 5.7 and 5.8 actually is no
restriction as long as r is odd (and d # 0). It creates problems only when the rank r is
even. In that case we always have 0 < d < r instead, or d = 0. As a consequence of these

last observations we obtain a generalization of [At], Theorem 10:

5.8 Theorem Let k = R. Every vector bundle £ € Q(r,d), for an admissible pair (r,d)
with respect to i such that r — d is odd and 0 < d < r, is isomorphic to L ® E(r,d),
for a suitable line bundle £L € Pic®X. Furthermore, L ® E4(r,d) = E4(r,d) for some
L € Pic®X if and only if L™/" = Ox with h the greatest common divisor of v and d. If
wr a: Q(h,0) = Q(r,d) is the bijection described in 4.1, then

wrd(L"" @ Fr) 2 L @ wpa(Fr) = L Ea(r,d).

The assumptions that the base field equals R and that » — d has to be odd etc.

th

guarantee that every line bundle of degree zero indeed has an r*” root of unity which is
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needed in the proof of 4.9, 5.6, 5.7 and 5.8. Similar statements are true over other base

fields, as long as we require that every line bundle of degree zero over X has an rt* root

of unity, for some fixed (rank) r, or for any.
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