On N-Summations, II.

Dedicated to my friend and collegue Nico Pumplün on the occasion of his 70th birthday

H. Röhrl 9322 La Jolla Farms Rd. La Jolla CA 92037-1125 USA

ABSTRACT: Given any R-semimodule M equipped with a semitopology \mathcal{T} we construct an N-protosummation $\mathcal{S}^p(\mathcal{T})$ for M. If \mathcal{T} satisfies certain properties then a similar construction leads to an unconditional N-summation $\mathcal{S}(\mathcal{T})$ for M, that is an N-summation for M equipped with the trivial prenorm $M \to \mathbb{D}$ over the N-summation $(\mathbb{D}^N, \sum_{\mathbb{D}})$ for \mathbb{D} . Conversely any N-protosummation \mathcal{S} on M gives rise to a topology $\mathcal{T}(\mathcal{S})$. If \mathcal{S} is an unconditional N-summation then $\mathcal{T}(\mathcal{S})$ acquires certain properties.

AMS Subject Classification (2000): 16Y60, 54A05. Key words: semirings, semidocules, N-summation, unconditionally summable.

0. Introduction

The goal of this paper is to develop a Galois connection between the conglomerate of N-summations (in the sense of [2]) for a given R-semimodule M and the set of semitopologies (in the sense of [2]) on M. It turns out that this requires the replacement of N-summation by the somewhat broader concept of unconditional N-summations.

In §1 we introduce for an R-semimodule equipped with a semitopology \mathcal{T} the concept of unconditional \mathcal{T} -summability for elements μ_* of M^N and prove a variety of properties of unconditionally \mathcal{T} -summable elements $\mu_* \in M^N$ under certain assumptions on \mathcal{T} . Under these conditions on \mathcal{T} the class $S_M^{\mathcal{T}}$ of unconditionally N-summable elements μ_* of M^N together with the map $\sum_M^{\mathcal{T}}: S_M^{\mathcal{T}} \to M$ that assigns to each $\mu_* \in S_M^{\mathcal{T}}$ its \mathcal{T} -sum is a weak unconditional \mathcal{T} -summation S(N). If \mathcal{T} has the additional property that the addition on M is \mathcal{T} -continuous than $S(\mathcal{T})$ turns out to be an unconditional N-summation and thus an N-summation for M if M is given a suitable prenorm whose value cone C is equipped with a suitable N-summation (such a prenorm together with an N-summation for C does always exist).

In §2 we assign to each weak unconditional \mathcal{T} -summation $\mathcal{S} = (S_M, \sum_M)$ a closure operator, again denoted by \mathcal{S} , and hence a semitopology $\mathcal{T}(\mathcal{S})$. $\mathcal{T}(\mathcal{S})$ has the properties that are required of \mathcal{T} in §1 to make $\mathcal{S}(\mathcal{T})$ a weak unconditional N-summation. The closure operator $A \mapsto \mathcal{S}(A)$ just mentioned is built from the assignment to each subset A of M the subset $A^{\mathcal{S}}$ of M consisting of all elements $\sum_M \mu_*$, where μ_* is in S_M and has the property that for arbitrarily large finite subsets T of N the partial sum $s_T(\mu_*)$ of μ_* over T is in A. $\mathcal{S}(A)$ is then defined as the intersection of all subsets B of M with $A \subseteq B = B^{\mathcal{S}}$.

§3 deals with morphisms $M \to M'$ of R-semimodules with N-protosummations. We show that such a morphism is always continuous with respect to the semitopology (on M and M') defined in §2. The converse is true if this semitopology on M' satisfies a certain separation assumption (UEP).

1 Unconditional N-Summations for Semitopological Semimodules

By a semitopological R-semimodule we mean an R-semimodule equipped with a semitopology \mathcal{T} . If the reference to \mathcal{T} needs to be emphasized we speak of a \mathcal{T} -semitopological R-semimodule.

Let $P_{fin}(N)$ be equipped with the discrete topology, denote by $P_{fin}^{\omega}(N)$ the Alexandroff compactification of $P_{fin}(N)$ and let $\omega \notin P_{fin}(N)$ and $P_{fin}^{\omega}(N) = P_{fin}(N) \cup \{\omega\}$. Given $\mu_* \in M^N$ let $s_{\square}(\mu_*)$ be the map $P_{fin}(N) \ni T \mapsto s_T(\mu_*) \in M$. With these notations we extend and replace [2],3.10, to arbitrary elements of M^N (see also [1], p. 262).

Definition 1.1 Let M be a \mathcal{T} -semitopological \mathbb{N}_0 -semimodule. Let furthermore $\mu_* \in M^N$ and suppose that $s^{\omega}_{\square}(\mu_*)$ is a continuous extension to $P^{\omega}_{\mathrm{fin}}(N)$ of $s_{\square}(\mu_*)$. Then $s^{\omega}_{\omega}(\mu_*)$, that is the value of $s^{\omega}_{\square}(\mu_*)$ at ω , is called a \mathcal{T} -sum of μ_* is said to be \mathcal{T} -summable with \mathcal{T} -sum $\sum_{M}^{\mathcal{T}}(\mu_*)$ if $\sum_{M}^{\mathcal{T}}(\mu_*)$ is the sole \mathcal{T} -sum of μ_* . μ_* is called unconditionally \mathcal{T} -summable if

- (0) for every subclass N' of $N, \mu_*^{N'}$ is \mathcal{T} -summable,
- (i) for every subclass N' of N and every map $\varphi: N \to N$ the map $\sum_{M}^{\mathcal{T}}(\mu_{*}^{N'\cap\varphi^{-1}})$ given by $N\ni n\mapsto \sum_{M}^{\mathcal{T}}(\mu_{*}^{N'\cap\varphi^{-1}(n)})\in M$ is \mathcal{T} -summable and $\sum_{M}^{\mathcal{T}}(\sum_{M}^{\mathcal{T}}(\mu_{*}^{N'\cap\varphi^{-1}}))=\sum_{M}^{\mathcal{T}}(\mu_{*}^{N'})$.

The class of unconditionally \mathcal{T} -summable elements of M^N is denoted by $S_M^{\mathcal{T}}$ and the map $S_M^{\mathcal{T}} \ni \mu_* \mapsto \sum_M^{\mathcal{T}}(\mu_*) \in M$ is written as $\sum_M^{\mathcal{T}}$. Furthermore the pair $(S_M^{\mathcal{T}}, \sum_M^{\mathcal{T}})$ is denoted by $\mathcal{S}(\mathcal{T})$. The class of \mathcal{T} -summable elements of M^N is written as $S_M^{p\mathcal{T}}$ and the map $S_M^{p\mathcal{T}} \ni \mu_* \mapsto \sum_M^{\mathcal{T}}(\mu_*)$ is denoted by $\sum_M^{p\mathcal{T}}(S_M^{p\mathcal{T}}, \sum_M^{p\mathcal{T}})$ is denoted by $\mathcal{S}^p\mathcal{T}$). Obviously, $\sum_M^{\mathcal{T}} = \sum_M^{p\mathcal{T}} |S_M^{\mathcal{T}}|$.

Lemma 1.2 Let M be a \mathcal{T} -semitopological \mathbb{N}_0 -semimodule and let N' be any subclass of N. If $\mu_* \in M^N$ is unconditionally \mathcal{T} -summable then so is $\mu_*^{N'}$.

Proof. If N'' is any subclass of N then $(\mu_*^{N'})^{N''} = \mu_*^{N' \cap N''}$. Hence $\mu_*^{N'}$ satisfies 1.1, (0) and (i).

Lemma 1.3 Let M be a \mathcal{T} -semitopological \mathbb{N}_0 -semimodule and let furthermore $\varphi: N \to N$ be any map. If $\mu_* \in M^N$ is unconditionally T-summable then so is $\sum_{M}^{\mathcal{T}} (\mu_*^{\varphi^{-1}})$.

Proof. By 1.1, (i), If $\sum_{M}^{\mathcal{T}}(\mu_*^{\varphi^{-1}})$ is T-summable. Let $N' \subseteq N$. Then $\sum_{M}^{\mathcal{T}}(\mu_*^{\varphi^{-1}})^{N'}$ is the map

$$N \ni n \mapsto \left\{ \begin{array}{ll} \Sigma_M^{\mathcal{T}}(\mu_*^{\varphi^{-1}(n)}) & , & n \in N' \\ 0 & , & n \notin N'. \end{array} \right.$$

Thus we have

$$(*) \qquad (\Sigma_M^{\mathcal{T}}(\mu_*^{\varphi^{-1}}))^{N'} = \Sigma_M^{\mathcal{T}}(\mu_*^{\varphi^{-1}(N) \cap \varphi^{-1}}).$$

Due to 1.1, (i), $(\sum_{M}^{\mathcal{T}}(\mu_{*}^{\varphi^{-1}}))^{N'}$ is T-summable and hence $\sum_{M}^{\mathcal{T}}(\mu_{*}^{\varphi^{-1}})$ satisfies 1.1, (0). Next let $\psi: N \to N$ be any map. The previous argument shows that for every $m \in N$, $(\sum_{M}^{\mathcal{T}}(\mu_{*}^{\varphi^{-1}}))^{N' \cap \psi^{-1}(m)}$ is \mathcal{T} -summable and that

$$\begin{split} \Sigma_{M}^{\mathcal{T}}((\Sigma_{M}^{\mathcal{T}}(\mu_{*}^{\varphi^{-1}}))^{N'\cap\psi^{-1}(m)}) &= \Sigma_{M}^{\mathcal{T}}(\Sigma_{M}^{\mathcal{T}}(\mu^{\varphi^{-1}(N'\cap\psi^{-1}(m))\cap\varphi^{-1}})) \\ &= \Sigma_{M}^{\mathcal{T}}(\mu_{*}^{\varphi^{-1}(N'\cap\phi^{-1}(m)}) = \Sigma_{M}^{\mathcal{T}}(\mu_{*}^{\varphi^{-1}(N')\cap\varphi^{-1}(\psi^{-1}(m))}) = \\ &= \Sigma_{M}^{\mathcal{T}}(\mu_{*}^{\varphi^{-1}(N')\cap(\psi\circ\varphi)^{-1}(m)}). \end{split}$$

Therefore

$$\Sigma_M^{\mathcal{T}}((\Sigma_M^{\mathcal{T}}(\mu_*^{\varphi^{-1}}))^{N'\cap\psi^{-1}}) = \Sigma_M^{\mathcal{T}}(\mu^{\varphi^{-1}(N')\cap(\psi\circ\varphi)^{-1}}).$$

So another application of (*) leads to

$$\Sigma_{M}^{\mathcal{T}}(\Sigma_{M}^{\mathcal{T}}(((\Sigma_{M}^{\mathcal{T}}(\mu_{*}^{\varphi^{-1}}))^{N'\cap\psi^{-1}}) = \Sigma_{M}^{\mathcal{T}}(\Sigma_{M}^{\mathcal{T}}(\mu^{\varphi^{-1}(N')\cap(\psi\circ\varphi)^{-1}})) = \Sigma_{M}^{\mathcal{T}}(\mu_{*}^{\varphi^{-1}(N')}) = \Sigma_{M}^{\mathcal{T}}((\Sigma_{M}^{\mathcal{T}}(\mu^{\varphi^{-1}(N')\cap\psi^{-1}})) = \Sigma_{M}^{\mathcal{T}}((\Sigma_{M}^{\mathcal{T}}(\mu_{*}^{\varphi^{-1}}))^{N'}).$$

Hence $\sum_{M}^{T} (\mu_*^{\varphi^{-1}})$ satisfies 1.1, (i).

Lemma 1.4 Let M be a \mathcal{T} -semitopological \mathbb{N}_0 -semimodule. Suppose furthermore that μ_* is unconditionally \mathcal{T} -summable and that $\overline{\mu}_* \in \text{has the property}$ that there is a bijection $\chi: \text{supp } \mu_* \to \text{supp } \overline{\mu}_* \text{ with } \mu_n = \overline{\mu}_{\chi(n)}, n \in \text{supp } \mu_*.$ Then $\overline{\mu}_*$ is unconditionally \mathcal{T} -summable and $\sum_{M}^{\mathcal{T}}(\overline{\mu}_*) = \sum_{M}^{\mathcal{T}}(\mu_*)$.

Proof. Put $S := \text{supp } \mu_*$. Then $s_T(\mu_*) = s_{S \cap T}(\mu_*)$ for all $T \in P_{fin}(N)$. Hence for any $T_0 \in P_{fin}(N)$

$$\{s_T(\mu_*): T_0 \subseteq T \in P_{fin}(N)\} = \{s_{T'}(\mu_*): S \cap T_0 \subseteq T' \in P_{fin}(N)\}.$$

Let $\overline{T}_0 := \chi(S \cap T_0)$. Then

$$\{s_T(\mu_*): T_0 \subseteq T \in P_{fin}(N)\} = \{s_{T'}(\overline{\mu}_*): \overline{T}_0 \subseteq T' \in P_{fin}(N)\}.$$

Hence $\sum_{M}^{\mathcal{T}}(\mu_*)$ is a \mathcal{T} -sum of $\overline{\mu}_*$. The same argument shows that whenever \overline{m} is a \mathcal{T} -sum of $\overline{\mu}_*$ then \overline{m} is a \mathcal{T} -sum of μ_* . Thus $\overline{\mu}_*$ is \mathcal{T} -summable since μ_* is and we have $\sum_{M}^{\mathcal{T}}(\overline{\mu}_*) = \sum_{M}^{\mathcal{T}}(\mu_*)$. Obviously $\overline{\mu}_*$ satisfies 1.1, (0), as for any $\overline{N} \subseteq N$, $\mu_*^{\chi^{-1}(\overline{N} \cap \text{supp } \overline{\mu}_*)}$ and $\overline{\mu}_*^{\overline{N}}$ satisfy the conditions stated for μ_* and $\overline{\mu}_*$ in 1.4. As for 1.1, (i), let $\overline{\varphi}: N \to N$ be any map and let $\overline{N} \subseteq N$. Partition N into the classes

$$\{\chi^{-1}(n): n \in \overline{N} \cap \text{ supp } \overline{\mu}_* \text{ and } \overline{\varphi}(n) = \overline{\varphi}(\overline{n})\} \qquad , \ \overline{n} \in \overline{\varphi}(\overline{N} \cap \text{ supp } \overline{\mu}_*),$$

and the complement in N of the union of these classes. This partition is given by some map $\varphi: N \to N$ whose restriction to supp μ_* equals $\overline{\varphi} \circ \chi$. Then both

$$(\triangle) \qquad \overline{\mu}_{\overline{\varphi}}^{\overline{\varphi}^{-1}(\overline{n}) \cap \overline{N}} \quad \text{and} \ \mu_{*}^{\chi^{-1}(\overline{N} \cap \text{supp } \overline{\mu}_{*}) \cap \overline{\varphi}^{-1}(\overline{n})} \quad , \overline{n} \in \overline{\varphi}(\overline{N} \cap \text{supp } \overline{\mu}_{*}),$$

satisfy the conditions stated for μ_* and $\overline{\mu}_*$ in 1.4, while for the remaining elements \overline{n} of N the two maps in (Δ) equal 0_* . By the above argument we have

$$\Sigma_M^{\mathcal{T}}(\overline{\mu}_*^{\overline{N} \cap \overline{\varphi}^{-1}}) = \Sigma_M^{\mathcal{T}}(\mu_*^{\chi^{-1}(\overline{N} \cap \operatorname{supp} \ \overline{\mu}_*) \cap \varphi^{-1}})$$

and

$$\begin{split} \Sigma_{M}^{\mathcal{T}} &(\Sigma_{M}^{\mathcal{T}}(\overline{\mu}_{*}^{\overline{N} \cap \overline{\varphi}^{-1}})) = \Sigma_{M}^{\mathcal{T}} \left(\Sigma_{M}^{\mathcal{T}}(\mu_{*}^{\chi^{-1}(\overline{N} \cap \operatorname{supp}} \ \overline{\mu}_{*} \cap \varphi^{-1})) \right) = \\ &= \Sigma_{M}^{\mathcal{T}} (\mu_{*}^{\chi^{-1}(\overline{N} \cap \operatorname{supp}} \ \overline{\mu}_{*})) = \Sigma_{M}^{\mathcal{T}}(\overline{\mu}_{*}^{N}). \end{split}$$

The preceding results were obtained without any conditions imposed on the semitopology \mathcal{T} . However, the following statements will require that \mathcal{T} satisfies appropriate conditions.

Proposition 1.5 Let M be a \mathcal{T} -semitopological \mathbb{N}_0 -semimodule. Then \mathcal{T} is T_1 -semitopology if and only if every $\mu_* \in M^{(N)}$ is unconditionally \mathcal{T} -summable and $\sum_{M}^{\mathcal{T}}(\mu_*) = \sum \{\mu_n : n \in \text{supp } \mu_*\}.$

Proof. Put $T_0 := \text{supp } \mu_*$ and $m := \sum \{\mu_n : n \in \text{supp } \mu_*\}$. Then $s_T(\mu_*) = m$ for all $T_0 \subseteq T \in P_{fin}(N)$ and hence m is a \mathcal{T} -sum of μ_* . Suppose $\overline{m} \neq m$. If \mathcal{T} is T_1 then there is a neighborhood \mathcal{N} of \overline{m} with $m \notin \mathcal{N}$. Hence $s_T(\mu_*) \notin \mathcal{N}$ for all $T_0 \subseteq T \in P_{fin}(N)$, whence \overline{m} cannot be a \mathcal{T} -sum of μ_* . Since for any $N' \subseteq N$, supp $\mu_*^{N'}$ is also finite, 1.1, (0), is satisfied. As for 1.1, (i), let $\varphi: N \to N$ be any map. Then $\mu_*^{N \cap \varphi^{-1}(n)}$ is \mathcal{T} -summable for every $n \in N$. Thus $\sum_{M}^{\mathcal{T}} (\mu_*^{N' \cap \varphi^{-1}})$ exists and has finite support, and is therefore also \mathcal{T} -summable. The formula in 1.1, (i), is now a consequence of the associativity of addition in M. Conversely, if \mathcal{T} is not a T_1 -semitopology then there are distinct elements m and \overline{m} of M such that every neighborhood \mathcal{N} of \overline{m} contains m. Let $n_0 \in N$ and denote by $\delta_*^{n_0,m} \in M^{(N)}$ the map satisfying $\delta_{n_0,m}^{n_0,m} = m$ and $\delta_n^{n_0,m} = 0$, $n \in N \setminus \{n_0\}$. Then $\delta_{n_0,m}^{n_0,m}$ has both m and \overline{m} as \mathcal{T} -sums and hence is not \mathcal{T} -summable.

The following definition spells out a separation property of the semitopology \mathcal{T} that ensures that the elements of M^N have at most one \mathcal{T} -sum. It is obvious that every Hausdorff semitopology has this separation property but it is not clear that the reverse implication is valid.

Definition 1.6 The semitopoligical \mathbb{N}_0 -semimodule M is said to have the Unique Extension Property (UEP) of every map $f: P_{fin}(N) \to M$ such that

- (0) $f(\phi) = 0$,
- (i) $f(T' \cup T'') = f(T') + f(T'')$ T' and $T'' \in P_{fin}(N)$ with $T' \cap T'' = \phi$

has at most one continuous extension for $P_{fin}^{\omega}(N)$.

Note that a map $f; P_{fin}(N) \to M$ satisfies 1.6, (0) and (i), if and only if there is a $\mu_* \in M^N$ with $f(T) = s_T(\mu_*), T \in P_{fin}(N)$.

Lemma 1.7 Let M be a \mathcal{T} -semitopological \mathbb{N} -semimodule and suppose that M satisfies (UEP). Then every $\mu_* \in M^{(N)}$ is unconditionally \mathcal{T} -summable and $\sum_{M}^{\mathcal{T}}(\mu_*) = \sum \{\mu_n : n \in \text{supp } \mu_*\}$. In particular, \mathcal{T} is a T_1 -semitopology.

Proof. See proof of 1.5.

Lemma 1.8 Let M be a \mathcal{T} -semitopological \mathbb{N} -semimodule. Suppose that M satisfies (UEP). Let $\mu'_*, \mu''_* \in S^{\mathcal{T}}_M$ be such that

given any open subset
$$U$$
 of M with $\sum_{M}^{\mathcal{T}}(\mu'_*) + \sum_{M}^{\mathcal{T}}(\mu''_*) \in U$
there is a $T_0 \in P_{fin}(N)$ with $s_T(\mu'_*) + s_T(\mu''_*) \in U$ for all $T_0 \subseteq T \in P_{fin}(N)$.

Then $\mu'_* + \mu''_*$ is \mathcal{T} -summable and $\sum_M^{\mathcal{T}}(\mu'_* + \mu''_*) = \sum_M^{\mathcal{T}}(\mu'_*) + \sum_M^{\mathcal{T}}(\mu''_*)$. Moreover, if $A(\mu'_*, \mu''_*)$ is valid for all $\mu'_*, \mu''_* \in S_M^{\mathcal{T}}$ then $S_M^{\mathcal{T}}$ is closed under addition.

Proof. Since $s_T(\mu'_*, \mu''_*) = s_T(\mu'_*) + s_T(\mu''_*)$ the condition in 1.8 implies that $\sum_{M}^{\mathcal{T}}(\mu'_*) + \sum_{M}^{\mathcal{T}}(\mu''_*)$ is a \mathcal{T} -sum of $\mu'_* + \mu''_*$. Hence (UEP) shows that $\mu'_* + \mu''_*$ is \mathcal{T} -summable. If the second condition is satisfied then 1.2 shows that $(\mu'_* + \mu''_*)^{N'} = {\mu'_*}^{N'} + {\mu''_*}^{N'}$ is \mathcal{T} -summable for all $N' \subseteq N$ and that

 $\sum_{M}^{\mathcal{T}}(\mu_*'^{N'} + \mu_*''^{N'}) = \sum_{M}^{\mathcal{T}}(\mu_*'^{N'}) + \sum_{M}^{\mathcal{T}}(\mu_*''^{N'})$. Next let $\varphi: N \to N$ be any map. Then for any $n \in N$

$$\Sigma_{M}^{\mathcal{T}}((\mu_{*}' + \mu_{*}'')^{N' \cap \varphi^{-1}(n)}) = \Sigma_{M}^{\mathcal{T}}(\mu_{*}'^{N' \cap \varphi^{-1}(n)}) + \Sigma_{M}^{\mathcal{T}}(\mu_{*}''^{N' \cap \varphi^{-1}(n)})$$

and thus

$$\begin{array}{lcl} \Sigma_{M}^{\mathcal{T}}((\mu_{*}'+\mu_{*}'')^{N'\cap\varphi^{-1}}) & = & \Sigma_{M}^{\mathcal{T}}((\mu_{*}')^{N'\cap\varphi^{-1}}+(\mu_{*}'')^{N'\cap\varphi^{-1}}) \\ & = & \Sigma_{M}^{\mathcal{T}}((\mu_{*}')^{N'\cap\varphi^{-1}})+\Sigma_{M}^{\mathcal{T}}((\mu_{*}'')^{N'\cap\varphi^{-1}}). \end{array}$$

Due to 1.2 and 1.3 both $\sum_{M}^{\mathcal{T}}((\mu'_*)^{N'\cap\varphi^{-1}})$ and $\sum_{M}^{\mathcal{T}}((\mu''_*)^{N'\cap\varphi^{-1}})$ are unconditionally \mathcal{T} -summable and therefore by the above argument $\sum_{M}^{\mathcal{T}}((\mu''_* + \mu''_*)^{N'\cap\varphi^{-1}})$ is \mathcal{T} -summable with \mathcal{T} -sum

$$\begin{split} \Sigma_{M}^{\mathcal{T}} \big(\Sigma_{M}^{\mathcal{T}} \big((\mu_{*}' + \mu_{*}'')^{N' \cap \varphi^{-1}} \big) \big) &= \Sigma_{M}^{\mathcal{T}} \big(\Sigma_{M}^{\mathcal{T}} \big((\mu_{*}')^{N' \cap \varphi^{-1}} \big) + \Sigma_{M}^{\mathcal{T}} \big((\mu_{*}'')^{N' \cap \varphi^{-1}} \big) \big) = \\ &= \Sigma_{M}^{\mathcal{T}} \big(\Sigma_{M}^{\mathcal{T}} \big((\mu_{*}')^{N' \cap \varphi^{-1}} \big) \big) + \Sigma_{M}^{\mathcal{T}} \big(\Sigma_{M}^{\mathcal{T}} \big((\mu_{*}'')^{N' \cap \varphi^{-1}} \big) \big) = \\ &= \Sigma_{M}^{\mathcal{T}} \big((\mu_{*}')^{N'} \big) + \Sigma_{M}^{\mathcal{T}} \big((\mu_{*}'')^{N'} \big) = \Sigma_{M}^{\mathcal{T}} \big((\mu_{*}'')^{N'} + \mu_{*}''^{N'} \big) = \Sigma_{M}^{\mathcal{T}} \big((\mu_{*}' + \mu_{*}'')^{N'} . \end{split}$$

The second condition in 1.8, which is $(A_{\mu'_*,\mu''_*})$ for all $\mu'_*,\mu''_* \in S_M^T$, is denoted by (A').

Lemma 1.9 Let M be a \mathcal{T} -semitopological \mathbb{N}_0 -semimodule. Suppose that M satisfies (UEP). Suppose that the following condition holds:

$$(A'') \qquad \begin{array}{ll} \text{for any } \overline{\mu}_*, \overline{\overline{\mu}}_* \in S_M^{\mathcal{T}} \text{ with supp } \overline{\mu}_* \cap \text{supp } \overline{\overline{\mu}}_* = \phi, \overline{\mu}_* + \overline{\overline{\mu}}_* \text{is in } S_M^{\mathcal{T}} \\ \text{and } \Sigma_M^{\mathcal{T}}(\overline{\mu}_* + \overline{\overline{\mu}}_*) = \Sigma_M^{\mathcal{T}}(\overline{\mu}_*) + \Sigma_M^{\mathcal{T}}(\overline{\overline{\mu}}_*). \end{array}$$

Then for any μ_*'' , $\mu_*'' \in S_M^T$, $\mu_*' + \mu_*''$ is in S_M^T and $\sum_M^T (\mu_*' + \mu_*'') = \sum_M^T (\mu_*'') + \sum_M^T (\mu_*'')$.

Proof. Let $\mu'_*, \mu''_* \in S^{\mathcal{T}}_M$. Choose $N = N' \dot{\cup} N''$ such that there are bijections $\chi' : N \to N'$ and $\chi'' : N \to N''$. Define $\overline{\mu}'_*, \overline{\overline{\mu}}''_* \in M^N$ by

$$\overline{\mu}_m := \left\{ \begin{array}{l} \mu'_n &, \ m = \chi'(n) \\ 0 &, \ m \in \chi''(N) \end{array} \right. \text{ and } \overline{\overline{\mu}}_m := \left\{ \begin{array}{l} 0 &, \ m \in \chi'(N) \\ \mu''_n &, \ m = \chi''(n) \end{array} \right. , m \in N.$$

By 1.4 both $\overline{\mu}_*$ and $\overline{\overline{\mu}}_*$ are in $S_M^{\mathcal{T}}$ and we have $\sum_M^T (\overline{\mu}_*) = \sum_M^T (\mu_*)$ and $\sum_M^T (\overline{\overline{\mu}}_*) = \sum_M^T (\mu_*'')$. Moreover we have supp $\overline{\mu}_* \cap \text{supp } \overline{\overline{\mu}}_* = \phi$. By assumption we get $\overline{\mu}_* + \overline{\overline{\mu}}_* \in S_M^{\mathcal{T}}$ and

$$\Sigma_M^{\mathcal{T}}(\overline{\mu}_* + \overline{\overline{\mu}}_*) = \Sigma_M^{\mathcal{T}}(\overline{\mu}_*) + \Sigma_M^{\mathcal{T}}(\overline{\overline{\mu}}_*) = \Sigma_M^{\mathcal{T}}(\mu_*') + \Sigma_M^{\mathcal{T}}(\mu_*'').$$

Define $\varphi: N \to N$ by

$$\varphi(m) := \left\{ \begin{array}{ll} \chi'^{-1}(m) &, m \in \chi'(N) \\ \chi''^{-1}(m) &, m \in \chi''(N) \end{array} \right., m \in N.$$

Then $\varphi^{-1}(n) = \{\chi'(n), \chi''(n)\}\$ and hence, for any $n \in N$,

$$\overline{\mu}_*^{\varphi^{-1}(n)} = \mu'_n \delta_*^n \quad \text{and } \overline{\overline{\mu}}_*^{\varphi^{-1}(n)} = \mu''_n \delta_*^n.$$

Thus we obtain

$$\Sigma_M^{\mathcal{T}}(\overline{\mu}_*^{\varphi^{-1}}) = \mu_*' \text{ and } \Sigma_M^{\mathcal{T}}(\overline{\overline{\mu}}_*^{\varphi^{-1}}) = \mu_*''$$

and therefore

$$\mu_*' + \mu_*'' = \Sigma_M^{\mathcal{T}}(\overline{\mu}_*^{\varphi^{-1}}) + \Sigma_M^{\mathcal{T}}(\overline{\overline{\mu}}_*^{\varphi^{-1}}).$$

However, (+) together with 1.5 and 1.7 show that the latter equals $\sum_{M}^{\mathcal{T}} (\overline{\mu}_{*}^{\varphi^{-1}} + \overline{\mu}_{*}^{\varphi^{-1}})$. So

$$\mu_*' + \mu_*'' = \Sigma_M^{\mathcal{T}} (\overline{\mu}_*^{\varphi^{-1}} + \overline{\overline{\mu}}_*^{\varphi^{-1}}) = \Sigma_M^{\mathcal{T}} ((\overline{\mu}_* + \overline{\overline{\mu}}_*)^{\varphi^{-1}}).$$

Since $\overline{\mu}_* + \overline{\overline{\mu}}_*$ is in $S_M^{\mathcal{T}}$ by assumption, 1.3 shows that the right side of the last equation is in $S_M^{\mathcal{T}}$. Thus we have $\mu'_* + \mu''_* \in S_M^{\mathcal{T}}$ and

$$\Sigma_{M}^{\mathcal{T}}(\mu_{*}' + \mu_{*}'') = \Sigma_{M}^{\mathcal{T}}(\Sigma_{M}^{\mathcal{T}}((\overline{\mu}_{*} + \overline{\overline{\mu}}_{*})^{\varphi^{-1}})) = \Sigma_{M}^{\mathcal{T}}(\overline{\mu}_{*} + \overline{\overline{\mu}}_{*}) = \Sigma_{M}^{\mathcal{T}}(\overline{\mu}_{*}) + \Sigma_{M}^{\mathcal{T}}(\overline{\overline{\mu}}_{*}) = \Sigma_{M}^{\mathcal{T}}(\mu_{*}') + \Sigma_{M}^{\mathcal{T}}(\mu_{*}'').$$

Addendum 1.10 Let M be a semitopological \mathbb{N}_0 -semimodule with (UEP). Then the conditions (A') and (A'') are equivalent.

Proof. Either condition is equivalent with: S_M^T is closed under addition and \sum_M^T is an additive map.

Lemma 1.11 Let M be a T-semitopological R- semimodule. Suppose that M satisfies (UEP) and that for some $r \in R$ the following condition holds:

 (S_r) given $\mu_* \in S_M^{\mathcal{T}}$ and any open subset U of M with $r\Sigma_M^{\mathcal{T}}(\mu_*) \in U$ there is a $T_0 \in P_{fin}(N)$ with $rS_T(\mu_*) \in U$ for all $T_0 \subseteq T \in P_{fin}(N)$.

Then $r\mu_*$ is in $S_M^{\mathcal{T}}$ and $\Sigma_M^{\mathcal{T}}(r\mu_*) = r\Sigma_M^{\mathcal{T}}(\mu_*)$ for all $\mu_* \in S_M^{\mathcal{T}}$.

Proof. Since $s_T(r\mu_*) = rs_T(\mu_*)$ the condition in 1.11 implies that $r \sum_M^T (\mu_*)$ is a \mathcal{T} -sum of $r\mu_*$. Due to (UEP) we obtain that $r\mu_*$ is \mathcal{T} -summable for all $\mu_* \in S_M^{\mathcal{T}}$ with T-sum $\sum_M^T (r\mu_*) = r \sum_M^T (\mu_*)$. Let $N' \subseteq N$. Then $\mu_*^{N'}$ is \mathcal{T} -summable due to 1.2. Consequently $(r\mu_*)^{N'} = r(\mu_*^{N'})$ is \mathcal{T} -summable due to the first part of this proof and we have

$$\Sigma_M^{\mathcal{T}}((r\mu_*)^{N'}) = \Sigma_M^{\mathcal{T}}(r(\mu_*^{N'})) = r\Sigma_M^{\mathcal{T}}(\mu_*^{N'}).$$

Next let $\varphi: N \to N$ be any map. Then for any $n \in N$

$$\Sigma_M^T((r\mu_*)^{N'\cap\varphi^{-1}(n)}) = r\Sigma_M^T(\mu_*^{N'\cap\varphi^{-1}(n)})$$

and hence

$$\Sigma_M^T((r\mu_*)^{N'\cap\varphi^{-1}}) = r\Sigma_M^T((\mu_*)^{N'\cap\varphi^{-1}}).$$

By assumption $\sum_{M}^{T}((\mu_*)^{N'\cap\varphi^{-1}})$ is \mathcal{T} -summable and therefore by the above argument $\sum_{M}^{T}((r\mu_*)^{N'\cap\varphi^{-1}})$ is \mathcal{T} -summable with \mathcal{T} -sum

$$\Sigma_{M}^{\mathcal{T}}(\Sigma_{M}^{\mathcal{T}}((r\mu_{*})^{N'\cap\varphi^{-1}})) = \Sigma_{M}^{\mathcal{T}}(r\Sigma_{M}^{\mathcal{T}}(\mu_{*}^{N'\cap\varphi^{-1}})) = r\Sigma_{M}^{\mathcal{T}}(\Sigma_{M}^{\mathcal{T}}(\mu_{*}^{N'\cap\varphi^{-1}})) = r\Sigma_{M}^{\mathcal{T}}(r\mu_{*}^{N'}) = \Sigma_{M}^{\mathcal{T}}(r\mu_{*}^{N'}) = \Sigma_{M}^{\mathcal{T}}(r\mu_{*})^{N'}.$$

(S') stands for assumption that (Sr) is satisfied for all $r \in R$.

Definition 1.12 (a) An N-protosummation for the \mathbb{N}_0 -semimodule M is a pair (S_M, \sum_M) consisting of a subclass S_M of M^N and a map \sum_M from S_M to M such that

(0) for every $m \in M$ there is a $n_m \in N$ such that the map $\delta_*^{m,n_m}: N \to N$ given by $\delta_{n_m}^{m,n_m} = m$ and $\delta_n^{m,n_m} = 0, n_m \neq n \in N$, is in S_M and satisfies $\sum_M (\delta_*^{m,n_m}) = m$.

- (b) An unconditional (resp. unconditional partial) N-summation for the R-semimodule M is a pair (S_M, \sum_M) consisting of a subclass S_M of M^N and a map $\sum_M : S_M \to M$ such that
 - (i) $M^{(N)} \subseteq S_M$ and $\mu_* \in M^{(N)}$ implies $\sum_M (\mu_*) = \sum \{\mu_n : n \in \text{supp } \mu_*\},$
 - (ii) for every $\mu_* \in S_M$ (resp. $\mu_* \in M^{(N)}$ and every $\nu_* \in S_M$, $\mu_* + \nu_*$ is in S_M and $\sum_M \mu_* + \nu_*$) = $\sum_M (\mu_*) + \sum_M (\nu_*)$,
- (ii') for every $r \in R$ and every $\mu_* \in S_M$, $r\mu_*$ is in S_M and $\sum_M (r\mu_*) = r \sum_M (\mu_*)$,
- (iii) for every $\mu_* \in S_M$ and every map $\varphi : N \to N, \mu_*^{\varphi^{-1}(n)}$ is in S_M for all $n \in N$ and the map $\sum_M (\mu_*^{\varphi^{-1}})$ given by $N \ni n \mapsto \sum_M (\mu_*^{\varphi^{-1}(n)}) \in M$ is in S_M and satisfies $\sum_M (\sum_M (\mu_*^{\varphi^{-1}})) = \sum_M (\mu_*)$.

Proposition 1.13 Let (S_M, \sum_M) be an N-summation for the prenormed R-semimodule M with value cone C and N-summation (S_C, \sum_C) for C. Then (S_M, \sum_M) is an unconditional N-summation for M. Conversely if (S_M, \sum_M) is an unconditional N-summation for the R-semimodule M then (S_M, \sum_M) is an N-summation for M equipped with the trivial prenorm $\|\Box\|_t : M \to \mathbb{D}$ and the N-summation (\mathbb{D}^N, \sum_M) for \mathbb{D} . Here

Proof. The first assertion follows by comparing [2], 3.3, with 1.12. The second assertion follows by straight forward calculation.

Tying 1.12 together with 1.8 - 1.10 we obtain

Theorem 1.14 Let M be a \mathcal{T} -semitopological R-semimodule that satisfies (UEP). If both (A') and (S') are valid then $\mathcal{S}(\mathcal{T})$ is an unconditional N-summation for M.

Proposition 1.15 Let M be a \mathcal{T} -semitopological R-semimodule that satisfies (UEP). If for every $\overline{m} \in M$ the map $M \ni m \mapsto m + \overline{m} \in M$ is continuous then for any $\mu_* \in S_M^{\mathcal{T}}$ and any $\overline{\mu}_* \in M^{(N)}$, $\mu_* + \overline{\mu}_*$ is in $S_M^{\mathcal{T}}$ and $\sum_{M}^{T} (\mu_* + \overline{\mu}_*) = \sum_{M}^{T} (\mu_*) + \sum_{M}^{T} (\overline{\mu}_*)$. In particular, for any $\mu_* \in S_M^{\mathcal{T}}$ and any $T \in P_{fin}(N)$, $\sum_{M}^{T} (\mu_*) = s_T(\mu_*) + \sum_{M}^{T} (\mu_*^{N \setminus T})$.

Proof. Let $\overline{m} := \sum_{M}^{T}(\overline{\mu}_{*})$ and let U be any open subset of M with $\sum_{M}^{T}(\mu_{*}) + \overline{m} \in U$. Then $V := \{m : m + \overline{m} \in U\}$ is an open subset of M satisfying $\sum_{M}^{T}(\mu_{*}) \in V$. Hence there is a $T'_{0} \in P_{fin}(N)$ such that $s_{T}(\mu_{*}) \in V$ for all $T'_{0} \subseteq T \in P_{fin}(N)$. Put $\overline{T}_{0} := \text{supp } \overline{\mu}_{*}$. Then $T_{B} := T'_{0} \cup \overline{T}_{0} \in P_{fin}(N)$ and

$$s_T(\mu_* + \overline{\mu}_*) = s_T(\mu_*) + s_T(\overline{\mu}_*) = s_T(\mu_*) + \overline{m} \in U \quad , T_0 \subseteq T \in P_{fin}(N).$$

Thus $\sum_{M}^{\mathcal{T}}(\mu_*) + \overline{m}$ is a \mathcal{T} -sum for $\mu_* + \overline{\mu}_*$. Since M satisfies (UEP) we conclude that $\mu_* + \overline{\mu}_*$ is \mathcal{T} -summable with \mathcal{T} -sum $\sum_{M}^{T}(\mu_*) + \overline{m} = \sum_{M}^{T}(\mu_*) + \sum_{M}^{T}(\overline{\mu}_*)$, proving the formula at the end of 1.15. In order to prove 1.1, (i), let $\varphi: N \to N$ be any map. Then

$$\Sigma_{M}^{\mathcal{T}}((\mu_{*} + \overline{\mu}_{*})^{N' \cap \varphi^{-1}(n)}) = \Sigma_{M}^{\mathcal{T}}(\mu_{*}^{N' \cap \varphi^{-1}(n)} + \overline{\mu}_{*}^{N' \cap \varphi^{-1}(n)})$$

is well defined for every $n \in N$. Since $\sum_{M}^{T} (\overline{\mu}_{*}^{N' \cap \varphi^{-1}})$ has finite support we have

$$\begin{split} \Sigma_{M}^{\mathcal{T}} &(\Sigma_{M}^{\mathcal{T}}((\mu_{*} + \overline{\mu}_{*})^{N' \cap \varphi^{-1}}) = \Sigma_{M}^{\mathcal{T}}(\Sigma_{M}^{\mathcal{T}}(\mu_{*}^{N' \cap \varphi^{-1}} + \overline{\mu}_{*}^{N \cap \varphi^{-1}})) = \\ &= \Sigma_{M}^{\mathcal{T}} (\Sigma_{M}^{\mathcal{T}}(\mu_{*}^{N' \cap \varphi^{-1}}) + \Sigma_{M}^{\mathcal{T}}(\overline{\mu}_{*}^{N' \cap \varphi^{-1}})) = \\ &= \Sigma_{M}^{\mathcal{T}} (\Sigma_{M}^{\mathcal{T}}(\mu_{*}^{N' \cap \varphi^{-1}})) + \Sigma_{M}^{\mathcal{T}}(\Sigma_{M}^{\mathcal{T}}(\overline{\mu}_{*}^{N' \cap \varphi^{-1}})) = \Sigma_{M}^{\mathcal{T}}(\mu_{*}^{N'}) + \Sigma_{M}^{\mathcal{T}}(\overline{\mu}_{*}^{N'}) = \\ &= \Sigma_{M}^{\mathcal{T}}(\mu_{*}^{N'} + \overline{\mu}_{*}^{N'}) = \Sigma_{M}^{\mathcal{T}}((\mu_{*} + \overline{\mu}_{*})^{N'}). \end{split}$$

We end this section with two statements involving the conditions (A') and (S_r) .

Proposition 1.16 Let M be a \mathcal{T} -semitopological R-semimodule. Let furthermore $r \in R$. If the map $M \ni m \mapsto rm \in M$ is continuous then M satisfies (S_r) .

Proof. Let $\mu_* \in S_M^T$ and let U be any open subset of M with $r \sum_M^T (\mu_*) \in U$. Put $V := \{m \in M : rm \in U\}$. Since the map in 1.16 in continuous V is an open subset of M and we have $\sum_M^T (\mu) \in V$. Since μ_* is T-summable there is a $0 \in P_{\text{fin}}(N)$ with $S_T(\mu_*) \in V$ for all $T_0 \subseteq T \in P_{\text{fin}}(N)$. Hence $rs_T(\mu_*) \in U$ for all $T_0 \subseteq T \in P_{\text{fin}}(N)$.

Proposition 1.17 Let M be a \mathcal{T} -semitopological R-semimodule. Then M satisfies (A'), provided that either one of the following two conditions is valid:

- (i) M^2 carries a semitopology such that
 - (a) $M^2 \ni (m', m'') \mapsto m' + m'' \in M$ is continuous,
 - (b) for every open subset U of M^2 and all $\mu'_*, \mu''_* \in S_M^{\mathcal{T}}$ with $(\sum_M^{\mathcal{T}}(\mu'_*), \sum_M^{\mathcal{T}}(\mu''_*)) \in U$ there is a $T_0 \in P_{\text{fin}}(N)$ with $(s_T(\mu'_(), s_T(\mu''_*)) \in U$ for all $T_0 \subseteq T \in P_{\text{fin}}(N)$;
- (ii) with M^2 carrying the product semitopology, $M^2 \ni (m', m'') \mapsto m' + m'' \in M$ is continuous.

Proof. Suppose (i) is valid. Let U be any open subset of M and let $\mu'_*, \mu''_* \in S_M^{\mathcal{T}}$ satisfy $\sum_M^{\mathcal{T}}(\mu'_*) + \sum_M^{\mathcal{T}}(\mu''_*) \in U$. Put $V := \{(m', m'') \in M^2 : m' + m'' \in U\}$. Then V is an open subset of M^2 with $(\sum_M^{\mathcal{T}}(\mu'_*), \sum_M^{\mathcal{T}}(\mu''_*)) \in V$. Hence (i), (b), furnishes a $T_0 \in P_{\text{fin}}(N)$ with $(s_T(\mu'), s_T(\mu'')) \in V$ for all $T_0 \subseteq T \in P_{\text{fin}}(N)$. Thus $s_T(\mu'_*) + s_T(\mu''_*) \in U$ for all $T_0 \subseteq T \in P_{\text{fin}}(N)$ as had to be shown. the proof using (ii) instead of (i) works similarly.

Remark 1.18 Let M be a \sum_{M}^{T} -semitopological R-semimodule. Then the initial semitopology on M^2 for which $M^2 \ni (m', m'') \mapsto m' + m'' \in M$ is continuous has as its open sets precisely the sets $\{(m', m'') : m + m'' \in V\}$, where V is some open set of M.

2 The Topology Associated with a N-Protosummation

We begin with a construction on M^k , k any positive integer, where M is a \mathbb{N} -semimodule with N-protosummation $\mathcal{S} = (S_M, \sum_M)$. Let $A \subseteq M^k$ and put

$$A^{\mathcal{S}} := \{ m^1, \dots, m^k \} \in M^k : \text{ there are } \mu_*^1, \dots, \mu_*^k \in S_M \text{ and a cofinal subclass } P \text{ of } P_{\text{fin}}(N) \text{ such that } m^1 = \Sigma_M(\mu_*^1), \dots, m^k = \Sigma_M(\mu_*^k) \text{ and } (s_T(\mu_*^1), \dots, s_T(\mu_*^k)) \in A \text{ for all } T \in P \}.$$

Lemma 2.1 Let M be a \mathbb{N}_0 -semimodule with N-protosummation S. Let furthermore A and B subsets of M^k . Then

(0)
$$\psi^{\mathcal{S}} = \phi \text{ and } (M^k)^{\mathcal{S}} = M^k$$
,

- (i) $A \subseteq A^{\mathcal{S}}$,
- (ii) $A \subseteq B$ implies $A^{\mathcal{S}} \subseteq B^{\mathcal{S}}$.

Proof. (0) and (ii) are obvious. As for (i), et $(m^1, ..., m^k) \in A$ and denote by μ_*^k the element $\delta_*^{m^k, n_{m^k}}$ of S_M (see 1.12, (a)), k = 1, ..., k. Put $P := \{T \in P_{fin}(N) : \{n_{m^1}, ..., n_{m^k}\} \subseteq T\}$. Then $m^K = \sum_M (\mu_*^K) = s_T(\mu_*^K)$ for all $T \in P$ and K = 1, ..., k.

 $A \subseteq M^k$ is called S-closed precisely when A^S holds. The complement in M^k of a S-closed subset of M^k is said to be S-open.

Lemma 2.2 Let M be an \mathbb{N}_0 -semimodule with N-protosummation S. Let furthermore $\{A_i : i \in I\}$ be a family of S-closed subsets of M^k . Then $\cap \{A_i : i \in I\}$ is also S-closed. In particular, for any subset A of M^k there is a smallest S-closed subset S(A) of M^k that contains A.

Proof. Let $(m^1, \ldots, m^k) \in (\cap \{A_i : i \in I\})^{\mathcal{S}}$. Then there are $\mu_*^1, \ldots, \mu_*^k \in \mathcal{S}_M$ and a cofinal subclass P of $P_{\text{fin}}(N)$ with $m^K = \sum_M (\mu_*^K), K = 1, \ldots, k$ and $(s_T(\mu_*^1), \ldots, s_T(\mu_*^k)) \in \cap \{A_i : i \in I\}$ for all $T \in P$. Hence (m^1, \ldots, m^k) is also in $A_i^{\mathcal{S}} = A_i, i \in I$, and thus in $\cap \{A_i : i \in I\}$.

Lemma 2.3 Let M be an \mathbb{N}_0 -semimodule with N-protosummation S. Let furthermore $\{A_1, \ldots, A_p \text{ be a finitely many } S$ -closed subsets of M^k . Then $A_1 \cup \ldots \cup A_p$ is also S-closed.

Proof. It suffices to let p=2. Let A and B be S-closed subsets of M^k . If (m^1,\ldots,m^k) is in $(A\cup B)^S$ then there are $\mu_*^1,\ldots,\mu_*^k\in \mathcal{S}_M$ and a confinal subclass P of $P_{\mathrm{fin}}(N)$ such that $m^K=\sum_M(\mu_*^K), K=1,\ldots,k$ and $(s_T(\mu_*^1),\ldots,s_T(\mu_*^k))\in A\cup B$ for all $T\in P$. Put $P_A:=\{T\in P:(s_T(\mu_*^1),\ldots,s_T(\mu_*^k))\in A\}$ and define P_B similarly. Then $P=P_A\cup P_B$ whence one of P_A and P_B , say P_A , is cofinal in $P_{\mathrm{fin}}(N)$. Thus (m^1,\ldots,m^k) is in $A^S=A$ and hence in $A\cup B$.

Proposition 2.4 Let M be a \mathbb{N}_0 -semimodule with N-protosummation S. Let furthermore A and B be subsets of M^k . Then

- (0) $S(\phi) = \phi$ and $S(M^k) = M^k$,
- (i) $A \subset \mathcal{S}(A)$,
- (ii) $A \subseteq B$ implies $S(A) \subseteq S(B)$,

- (iii) AS(S(A)) = S(A),
- (iv) $A = \mathcal{S}(A)$ if an only if $A = A^{\mathcal{S}}$.

Proof. Clear from Lemma 2.1 and Lemma 2.2.

By Proposition 2.4 the map given by $P(M^k) \ni \mapsto \mathcal{S}(A) \in P(M^k)$ is a closure operator. The associated grid $\mathcal{G}(\mathcal{S})$ (see [2], A.15 and A.16) gives rise to the semitopology $\widehat{\mathcal{G}}(\mathcal{S})$ (see [2], A.3), which on account of 2.3 is in fact a topology $\mathcal{T}^k(\mathcal{S})$. Next we develop some properties of $\mathcal{T}^k(\mathcal{S})$. We shall write $\mathcal{T}(\mathcal{S})$ instead of $\mathcal{T}^1(\mathcal{S})$.

Lemma 2.5 Let M be a \mathbb{N}_0 -semimodule with N-protosummation S. Then

- (i) $A \subseteq M^k$ is S-closed if and only if for every $(\mu_*^1, \ldots, \mu_*^k) \in S_M^k$ for which there is a cofinal subclass P of $P_{\text{fin}}(N)$ with $(s_T(\mu_*^1, \ldots, s_T(\mu_*^k)) \in A$ for all $T \in P$, $) \sum_M (\mu_*^1), \ldots, \sum_M (\mu_*^k) \in A$ holds;
- (ii) $U \subseteq M^k$ is S-open if and only if for every $(\mu_*^1, \ldots, m_*^k) \in S_M^k$ with $(\sum_M (\mu_*^1), \ldots, \sum_M (\mu_*^k)) \in U$ there is a $T_0 \in P_{\text{fin}}(N)$ such that $(s_T(\mu_*^1), \ldots, s_T(\mu_*^k)) \in U$ for all $T_0 \subseteq T \in P_{\text{fin}}(N)$;
- (iii) for every subset A of M^k , $A \subseteq A^S \subseteq S(A)$.

Proof. (i) and (ii) are immediate consequences of the definition of S-open resp. S-closed. (iii) follows from Proposition 2.4, (i).

Addendum 2.6 Let M be a \mathbb{N} -semimodule with N-protosummation S. If μ_* is in S_M then for every $\mathcal{T}(S)$ -open subset U of M with $\sum_M (\mu_*) \in U$ there is a $T_0 \in P_{\text{fin}}(N)$ such that $s_T(\mu_*) \in U$ for all $T_0 \subseteq T \in P_{\text{fin}}(N)$.

Proof. This is a special case of Lemma 2.5, (iii).

Note that Addendum 2.6 states that for any N-protosummation S the sum $\sum_{M}(\mu_*)$ of every element $\mu_* \in S_M$ can be obtained by the limit process (for a suitable topology) described at the beginning of section 1.

Lemma 2.7 Let M be a \mathbb{N}_0 -semimodule with N-protosummation \mathcal{S} . Let furthermore $\overline{m} \in M$. Then the map $M \ni m \mapsto (\overline{m}, m) \in M^2$ is continuous with respect to the topologies $\mathcal{T}(\mathcal{S})$ and $\mathcal{T}^2(\mathcal{S})$.

Proof. We have to show that the inverse image of any S-closed subset of M^2 under the above map is S-closed. Let $A \subseteq M^2$ satisfy $A = A^S$. The inverse image of A is the set $B = \{m \in M : (\overline{m}, m) \in A\}$. We have (with the obvious omissions)

- $B^{\mathcal{S}} = \{m' \in M : \text{there is a } m'_* \in S_M \text{ and a cofinal subclass } P \text{ of } P_{\text{fin}}(N) \text{ with } m' = \Sigma_M(\mu'_*) \text{ and } s_T(\mu'_*) \in B \text{ for all } T \in P\} = \{m' \in M : m' = \Sigma_M(\mu'_*) \text{ and } (\overline{m}, s_T(\mu'_*)) \in A \text{ for all } T \in P\}.$
- Let $\overline{\mu}_* := \delta_*^{\overline{m}, n_{\overline{m}}}$. Put $\overline{P} := \{T \in P : N_{\overline{m}} \in T\}$. Then $\overline{m} = \sum_M (\overline{\mu}_*)$ and $(s_T(\overline{\mu}_*), s_T(\mu'_*)) \in A$ for all $T \in \overline{P}$. Hence $(\overline{m}, m') \in A^S = A$ and therefore $m' \in B$.

Lemma 2.8 Let M be a \mathbb{N}_0 -semimodule with N-protosummation $\mathcal{S} = (S_M, \sum_M)$ such that S_M is closed under addition and that \sum_M is an additive map. Then the map $M^k \ni (m^1, \ldots, m^k) \mapsto m^1 + \ldots + m^k, k = 1, 2, \ldots$, is continuous with respect to the topologies $\mathcal{T}^k(\mathcal{S})$ and $\mathcal{T}(\mathcal{S})$.

Proof. Let $A \subseteq M$ with $A = A^S$. The inverse image of A is the set $B = \{(m^1, \ldots, m^k) \in M^k : m^1 + \ldots + m^k \in A\}$. We have

 $B^{\mathcal{S}} = \{m^1, \dots, m^k\} \in M^k$: there is a $(\mu_*^1, \dots, \mu_*^k) \in S_M^k$ and a cofinal subclass P of $P_{\mathrm{fin}}(N)$ with $m^K = \sigma_M(\mu_*^K), K = 1, \dots, k$ and $(s_T(\mu_*^1), \dots, s_T(\mu_*^k) \in B$ for all $T \in P\} = \{(m^1, \dots, m^k) \in M^k : \text{ there is a } (\mu_*^1, \dots, m_*^k) \in S_M^k \text{ and a cofinal subclass } P \text{ of } P_{\mathrm{fin}}(N) \text{ with } m^K = \Sigma_M(\mu_*^K), K = 1, \dots, k, \text{ and } s_T(\mu_*^1) + \dots + s_T(\mu_*^k) \in A \text{ for all } T \in P\}.$

By assumption $\mu_*^1 + \ldots + \mu_*^k$ is in S_M . Since $s_T(\mu_*^1 + \ldots + \mu_*^k) = s_T(\mu_*^1) + \ldots + s_T(\mu_*^k) \in A$ for all $T \in P$. We obtain $\sum_M (\mu_*^1 + \ldots + \mu_*^k) \in A^S = A$. Since $\sum_M (\mu_*^1 + \ldots + \mu_*^k) = \sum_M (\mu_*^1) + \ldots + \sum_M (\mu_*^k) = m^1 + \ldots + m^k$ by assumption, it follows that (m^1, \ldots, m^k) is in B.

Lemma 2.9 Let M be a R-semimodule with N-protosummation $S = (S_M, \sum_M)$ such that S_M is closed under left multiplication with any $r \in R$ and that $\sum_M (r\mu_*) = r \sum_M (\mu_*)$ for all $r \in R$ and $\mu_* \in S_M$. Then for every $r \in R$ the map $M \ni m \mapsto rm \in M$ is continuous with respect to the topology $\mathcal{T}(S)$.

Proof. Let $A \subseteq M$ with $A = A^{\mathcal{S}}$. Then the inverse image of A is the set $B = \{m \in M : rm \in A\}$. Hence we obtain

 $B^{\mathcal{S}} = \{ m \in M : \text{there is a } \mu_* \in S_M \text{ and a cofinal subclass } P \text{ of } P_{\text{fin}}(N)$ with $m = \Sigma_M(\mu_*)$ and $(s_T(\mu_*) \in B \text{ for all } T \in P \} =$ $= \{ (m \in M : \text{ there is a } (\mu_* \in S_M \text{ and a cofinal subclass } P \text{ of } P_{\text{fin}}(N)$ with $m = \Sigma_M(\mu_*)$, and $rs_T(\mu_*) \in A \text{ for all } T \in P \}.$

Since $r\mu_*$ is in S_M and $s_T(r\mu_*) = rs_T(\mu_*)$ is in A for all $T \in P$ we have $\sum_M (r\mu_*) = r \sum_M (\mu_*)$ in A and thus $m = \sum_M (\mu_*)$ in B.

Lemma 2.10 Let M be a \mathbb{N}_0 -semimodule with N-protosummation \mathcal{S} . Then $\mathcal{T}^k(\mathcal{S})$ is a T_1 -topology if and only if every $(\mu_*^1, \ldots, \mu_*^k) \in S_M^k$ for which there is a cofinal subclass P of $P_{\text{fin}}(N)$ and a $(m^1, \ldots, m^k) \in M^k$ such that $(s_T(\mu_*^1), \ldots, s_T(\mu_*^k) = (m^1, \ldots, m^k)$ for all $T \in P$ satisfies $(\sum_M (\mu_*^1), \ldots, \sum_M (\mu_*^k)) = (m^1, \ldots, m^k)$. In particular, if $\mathcal{T}(\mathcal{S})$ is a T_1 topology then so is each $\mathcal{T}^k(\mathcal{S}), k = 2, 3, \ldots$

Proof. Suppose that $\mathcal{T}^k(\mathcal{S})$ is a T_1 -topology and that $(\mu_1^*, \dots, \mu_k^k) \in S_M^k$ satisfies the hypotheses stated in Lemma 2.9. Put $\overline{m}^K := \sum_M (\mu_*^K), K = 1, \dots, k$. If \overline{U} is an \mathcal{S} -open subset of M^k containing $(\overline{m}^1, \dots, \overline{m}^k)$ but not containing (m^1, \dots, m^k) then $(s_T(mu_*^1), \dots, s_T(\mu_*^k) \in \overline{U})$ and we have a contraction to Lemma 2.5, (ii). In order to prove the converse let $(m^1, \dots, m^k) \in M^k$. Then $\{(m^1, \dots, m^k)\}^{\mathcal{S}}$ consists of all $(\overline{m}^1, \dots, \overline{m}^k)$ for which there is a $(\overline{\mu}_*^1, \dots, \overline{\mu}_*^k) \in S_M^k$ and a cofinal subclass P of $P_{\text{fin}}(N)$ such that $\overline{m}^K = \sum_M (\overline{\mu}_*^K), K = 1, \dots, k$, and $(s_T(\overline{\mu}_*^1), \dots, s_T(\overline{\mu}_*^k) = (m^1, \dots, m^k)$ for all $T \in P$. Hence we obtain $(\overline{m}_1, \dots, \overline{m}_k) = (\sum_M (\overline{\mu}_*^1), \dots, \sum_M (\overline{\mu}_*^k) = (m^1, \dots, m^k)$, that is $\{(m^1, \dots, m^k)\}^{\mathcal{S}} = \{(m^1, \dots, m^k)\}$. This means that $T^k(\mathcal{S})$ is a T_1 -topology.

Proposition 2.11 Let M be a \mathbb{N}_0 -semimodule with N-protosummation S such that $\mathcal{T}(S)$ is a T_1 -topology. Then every $\mu_* \in S_M$ satisfies:

if $\overline{m} \in M$ is such that for each S-open subset U of M with $\overline{m} \in U$ there is a $T_0 \in P_{\text{fin}}(N)$ with $s_T(\mu_*) \in U$ for all $T_0 \subseteq T \in P_{\text{fin}}(N)$ then $\overline{m} = \sum_M (\mu_*)$.

Proof. Suppose there were a \overline{m} contradicting the stated property with respect to some $\mu_* \in S_M$. Since $\mathcal{T}(\mathcal{S})$ is a T_1 -topology there is an \mathcal{S} -open subset U of M with $\overline{m} \in U$ and $\sum_M (\mu_*) \notin U$ such that $s_T(\mu_*) \in U$ for all $T_0 \subseteq T \in P$, where T_0 is chosen suitably. This, however, is in violation of Lemma 2.5, (ii).

This section closes with a construction of $\mathcal{S}(A)$, whee A is any subset of M^k and M is a \mathbb{N}_0 -semimodule with N-protosummation $\mathcal{S} = (S_M, \sum_M)$. Since $A \subseteq S(A)$ we have $A \subseteq A^{\mathcal{S}} \subseteq (S(A))^{\mathcal{S}} = \mathcal{S}(A)$. Put $A^{\mathcal{S}^1} := A^{\mathcal{S}}$ and define by transfinite induction, for any ordinal η ,

$$A^{\mathcal{S}^{\eta}} := \begin{cases} (A^{\mathcal{S}^{\eta'}})^{\mathcal{S}} & \text{, if } \eta \text{ is a successor ordinal with } \eta = \eta' + 1 \\ \cup \{A^{\mathcal{S}^{\eta'}} : \eta' < \eta\} & \text{, otherwise.} \end{cases}$$

With this notation we obtain

Proposition 2.12 Let M be a \mathbb{N}_0 -semimodule with N-protosummation \mathcal{S} and let $A \subseteq M^k$. Then there is an ordinal η_0 with $\operatorname{card}(\eta_0) \leq \operatorname{card}(M^k)$ such that $\mathcal{S}(A) = A^{\mathcal{S}^{n_0}}$.

Proof. We have $A \subseteq A^{S^{\eta'}} \subseteq A^{S^{\eta}}$ for any ordinals η' and η with $\eta' \leq \eta$. Hence there is an ordinal η_0 with $\operatorname{card}(\eta_0) \leq \operatorname{card}(M^k)$ and $A^{S^{\eta_0}} = A^{S^{\eta}}$ for all $\eta_0 \leq \eta$. We claim that $A^{S^{\eta}} \subseteq \mathcal{S}(A)$ holds for any ordinal η . This is true for $\eta = 1$ due to Lemma 2.5, (iii). If η is a successor ordinal with $\eta = \eta' + 1$ and $A^{S^{\eta'}} \subseteq \mathcal{S}(A)$ then $A^{S^{\eta}} = (A^{S^{\eta'}})^{\mathcal{S}} \subseteq (\mathcal{S}(A))^{\mathcal{S}} = \mathcal{S}(A)$. If η is not a successor ordinal and $A^{S^{\eta'}} \subseteq \mathcal{S}(A)$ for all $\eta' < \eta$ then $A^{S^{\eta}} = \bigcup \{A^{S^{\eta'}} : \eta' < \eta\} \subseteq \mathcal{S}(A)$. This means that we have $A^{S^{\eta_0}} \subseteq \mathcal{S}(A)$. Hence $A \subseteq A^{S^{\eta_0+1}} = (A^{S^{\eta_0}})^{\mathcal{S}} = A^{S^{\eta_0}}$ and therefore $\mathcal{S}(A) \subseteq A^{S^{\eta_0}}$, that is $\mathcal{S}(A) = A^{S^{\eta_0}}$.

3 Morphisms of R-Semimodules with N-Protosummations

Given any map $f: M \to M'$ and any $\mu_* \in M^N$ we denote by $f^N(\mu_*)$ the map $N \ni n \mapsto f(\mu_n) \in M'$. Hence $f^N(\mu_*)$ is in $M^{\mathbb{N}}$.

Definition 3.1 Let M and M' be R-semimodules with N-protosummations $S = (S_M, \sum_M)$ resp. $S' = (S_{M'}, \sum_M)$. Then the homomorphism $f: M \to M'$ of R-semimodules is called a morphism of R-semimodules with N-protosummation if

(i) $f^n(S_M) \subseteq S_{M'}$,

(ii)
$$f(\sum_{M}(\mu_*)) = \sum_{M'}(f^N(\mu_*)), \quad \mu_* \in S_M.$$

Lemma 3.2 Let M and M' be \mathbb{R} -semimodules with N-protosummation $S = (S_M, \sum_M)$ resp. $S' = (S_{M'}, \sum_{M'})$. Let furthermore $f : M \to M'$ be a morphism of R-semimodules with N-protosummations. then supp $f(\mu_*) \subseteq \sup \mu_*$ for all $\mu_* \in S_M$. In particular, if $0_* \in S_M$ then $f(0_*) = 0_* \in S_{M'}$. If S_M is closed under addition and \sum_M is additive then $\sum_{M'}$ is additive on $f^N(S_M)$. If S_M is closed under left multiplication by $r \in R$ and \sum_M commutes with left multiplication by r then so does \sum_M , on $f^N(S_M)$.

Proof. We only check the second assertion. If S_M is closed under addition and $\mu_*, \mu'_* \in S_M$ then $f^N(\mu_*) + f^N(\mu'_*) = f^N(\mu_* + \mu'_*) \in S_{m'}$ and

$$\Sigma_{M'}(f^N(\mu_*) + f^N(\mu'_*)) = \Sigma_{M/}(f^N(\mu_* + \mu'_*)) = f(\Sigma_M(\mu_* + \mu'_*))$$

$$= f(\Sigma_M(\mu_*) + \Sigma_M(\mu'_*)) = f(\Sigma_M(\mu_*)) + f(\Sigma_M(\mu'_*)) = \Sigma_{M'}(f^N(\mu_*)) + \Sigma_{M'}(f^N(\mu'_*)).$$

Proposition 3.3 Let M and M' be \mathbb{R} -semimodules with N-protosummation S resp. S'. Let furthermore $f: M \to M'$ be a morphism of R-semimodules with N-protosummations. Then for every $k \in \mathbb{N}$, $f^k: M^k \to M'^k$ is continuous with respect to the topology $\mathcal{T}^k(\mathcal{S})$ resp. $\mathcal{T}^k(\mathcal{S}')$.

Proof. Let $A \subseteq M^k$ and let $(m^1, \ldots, m^k) \in A^S$. Then there are $\mu_*^1, \ldots, \mu_*^k \in S_M$ and a cofinal subclass P of $P_{\text{fin}}(N)$ with $m^K = \sum_M (\mu_*^K), K = 1, \ldots, k$ and $(s_T(\mu_*^1), \ldots, s_T(\mu_*^k)) \in A$ for all $T \in P$. Hence

$$f(m^K) = f(\Sigma_M(\mu_*^K)) = \Sigma_{M'}(f^N(\mu_*^K))$$
 , $K = 1, ..., k$,

and

$$(s_T(f^N(\mu_*^1), \dots, s_T(f^N(\mu_*^k))) = f^k(s_T(\mu_*^1), \dots, s_T(\mu_*^k)) \in f^k(A)$$
 , $T \in P$.

Thus $f(m^1, \ldots, m^k) \in (f^k(A))^{\mathcal{S}'}$ and therefore $f^k(A^{\mathcal{S}}) \subseteq (f^k(A))^{\mathcal{S}'}$.

Now suppose that $A' \subseteq M'^k$ is $\mathcal{T}^k(\mathcal{S}')$ -closed. Due to Proposition 2.4, (iv), this means that $A' = A'^{\mathcal{S}'}$. Put $A := (f^k)^{-1}(A')$. If $(m^1, \ldots, m^k) \in A^{\mathcal{S}}$ then

$$(f(m^1), \dots, f(m^k)) = f^k(m^1, \dots, m^k) \in A'^{S'} = A'$$

and therefore $(m^1, \ldots, m^k) \in A$. Thus $A = A^{\mathcal{S}}$, that is A is $\mathcal{T}^k(\mathcal{S})$ -closed.

Proposition 3.4 Let M and M' be semitopological R-semimodules with semitopology \mathcal{T} resp \mathcal{T}' and suppose that M' satisfies (UEP). Let furthermore $f: M \to M'$ be a continuous homomorphism of R-semimodules. Then f is a morphism of R-semimodules with N-protosummations $\mathcal{S}^p(\mathcal{T})$ resp. $\mathcal{S}^p(\mathcal{T}')$ as well as a morphism of R-semimodules with unconditional partial N-summation $\mathcal{S}(\mathcal{T})$ resp. $\mathcal{S}(\mathcal{T}')$.

Proof. Let $\mu^* \in S_M$ with $m := \sum_M (\mu_*)$. Then $f(s_T(\mu_*)) = s_T(f^N(\mu_*)), T \in P_{\text{fin}}(N)$, whence f(m) si a \mathcal{T}' -sum of $f^N(\mu_*)$. Since M' satisfies $(UEP), f^N(\mu_*)$ is \mathcal{T} -summable. In particular, Definition 3.1, (i) and (ii), are satisfied. The second part of Proposition 3.4 follows from the formula $f(\sum_M (\mu_*^{N'})) = \sum_{M'} ((f^N(\mu_*))^{N'})$.

References

- [1] Bourbaki, N.: General Topology I, Hermann, Paris; Addison-Wesley, Reading, Massachusetts, 1966.
- [2] Fillmore, J., Pumplün, D., and Röhrl, H.: On N-Summations, I. Appl. Cat. Struct **10**(2002), 291-315.