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ABSTRACT: Given any R-semimodule M equipped with a
semitopology T we construct an N-protosummation SP(7) for
M. Tf T satisfies certain properties then a similar construc-
tion leads to an unconditional N-summation S(7°) for M, that
is an N-summation for M equipped with the trivial prenorm
M — D over the N-summation (DV,Y ) for D. Conversely
any N-protosummation S on M gives rise to a topology T (S). If
S is an unconditional N-summation then 7 (S) acquires certain
properties.
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0. Introduction

The goal of this paper is to develop a Galois connection between the con-
glomerate of N-summations (in the sense of [2]) for a given R-semimodule M
and the set of semitopologies (in the sense of [2]) on M. It turns out that this
requires the replacement of N-summation by the somewhat broader concept
of unconditional N-summations.



In §1 we introduce for an R-semimodule equipped with a semitopology 7
the concept of unconditional 7 -summability for elements p, of M and prove
a variety of properties of unconditionally 7-summable elements p, € MY
under certain assumptions on 7. Under these conditions on 7 the class
ST, of unconditionally N-summable elements j, of M” together with the
map Z;\r/f : ST, — M that assigns to each p, € S]; its T-sum is a weak
unconditional 7-summation S(N). If 7 has the additional property that the
addition on M is T-continuous than S(7) turns out to be an unconditional
N-summation and thus an N-summation for M if M is given a suitable
prenorm whose value cone C'is equipped with a suitable N-summation (such
a prenorm together with an N-summation for C' does always exist).

In §2 we assign to each weak unconditional 7-summation & = (S, Y_ /)
a closure operator, again denoted by &, and hence a semitopology 7 (S).
T(S) has the properties that are required of 7 in §1 to make S(7T) a weak
unconditional N-summation. The closure operator A — S(A) just men-
tioned is built from the assignment to each subset A of M the subset AS of
M consisting of all elements ) ,, /., where p, is in Sy, and has the property
that for arbitrarily large finite subsets 7" of N the partial sum sp () of .
over T is in A. S(A) is then defined as the intersection of all subsets B of
M with A C B = BS.

§3 deals with morphisms M — M’ of R-semimodules with N-protosummations.
We show that such a morphism is always continuous with respect to the
semitopology (on M and M') defined in §2. The converse is true if this
semitopology on M’ satisfies a certain separation assumption (UEP).

1 Unconditional N-Summations for
Semitopological Semimodules

By a semitopological R-semimodule we mean an R-semimodule equipped
with a semitopology 7. If the reference to 7 needs to be emphasized we
speak of a 7T-semitopological R-semimodule.

Let Pfin(IN) be equipped with the discrete topology, denote by Py, (N)
the Alexandroff compactification of Py;,(N) and let w & Py, (N) and P, (N) =
Pin(N) U {w}. Given p, € MY let sg(u.) be the map Ppp(N) > T —
st(p«) € M. With these notations we extend and replace [2],3.10, to arbi-
trary elements of MY (see also [1], p. 262).



Definition 1.1 Let M be a 7 -semitopological Ny-semimodule. Let further-
more yu, € MY and suppose that s¥(u.) is a continuous extension to P (N)
of sg(us). Then s¥(u,), that is the value of s¥(u.) at w, is called a T-sum
of i, is said to be T-summable with T-sum 3.7 (u,) if 327 (1) is the sole
T-sum of p,. p, is called unconditionally T -summable if

(0) for every subclass N’ of N, Y’ is T-summable,

(i) for every subclass N’ of N and every map ¢ : N — N the map
ZAT/[( N’”“’_l) given by N 3 n ZL(/LTOW (n)) € M is T-summable

*

and Y27, (8 (1™ ) = X0, (). O

The class of unconditionally 7-summable elements of M” is denoted by
S7, and the map S7; 3 . — 3.7 (11,) € M is written as 37 . Furthermore
the pair (ST, 327 ) is denoted by S(T). The class of T-summable elements
of MV is written as S/ and the map S%7 3 pu, — 3.7 (1) is denoted by
SET(SET ST is denoted by SPT). Obviously, $27 = ST (ST .

Lemma 1.2 Let M be a T -semitopological Ny -semimodule and let N' be any
subclass of N. If p, € MY is unconditionally T -summable then so is pff’.

Proof. If N” is any subclass of N then (u)¥' = pM"N" Hence !’
satisfies 1.1, (0) and (i). n

Lemma 1.3 Let M be a T -semitopological Ny-semimodule and let further-
more ¢ : N — N be any map. If p, € MY is unconditionally T-summable

then so is Z]\T/[(,uf_l).

Proof. By 1.1, (i), If 3.7 (u¢”") is T-summable. Let N’ C N. Then
ST (ue™ )N is the map

N9n|_> 271\—4(/1‘(5 ()) ’ TLEN’
0 , n¢N".
Thus we have
(*) (T (e NN = ST, (uem e,



Due to 1.1, (i), (327, (u¢ "))V is T-summable and hence 3.7 (u¢ ) satisfies
1.1, (0). Next let ©» : N — N be any map. The previous argument shows
that for every m € N, (ZAT/[(uf_l))N'W_l(m) is T-summable and that

EL((EL(uf_l))N'”’/’_I(m)) EL(EL(MWI(N’W‘I(m))ﬂw‘l))
= EL(/L*@_I(N’ﬂd)_l(m)) — Eﬁ(uf—l(]vl)ntp—l(w—l(m))) _
= S, (N0 )

Therefore
ST(ET (e )Ny = BT, (e YONwen ™
So another application of (x) leads to

1

Sh (SR (SR (ue )NV = SR (SF (e Nnwe ™) =
—1 1 -1 1 -1 -1 !
=37, (" ") = S5 (S5 (™ M) = SL(ER (W )™).

Hence .1, (4 ') satisfies 1.1, (i). n

Lemma 1.4 Let M be a T -semitopological Ny -semimodule. Suppose further-
more that . is unconditionally T -summable and that 1, € has the property
that there is a bijection X : supp px — supp fi, with pin = fiy(n), " € SUPDP fhu-

Then T, is unconditionally T -summable and ZL(ﬁ*) = 271\:1(#*)

Proof. Put S := supp p.. Then sr(u.) = ssar(ps) for all T € Py (N).
Hence for any T € Pjin(N)

{ST(,LL*) . T() g T e me(N)} = {STI(/L*) SN To g T’ € me(N)}
Let Ty := x(SNTp). Then
{s7(p) : To € T € Prin(N)} = {37 (i) : To CT" € Ppin(N)}.

Hence 27 (1) is a T-sum of 7z,. The same argument shows that whenever
m is a T-sum of 1, then m is a 7-sum of u,. Thus 7z, is 7-summable since
pis is and we have Y7 (7,) = 3.7 (11,). Obviously 7, satisfies 1.1, (0), as

for any N C N, ui‘_l(ﬁnsul’p ) and 7V satisfy the conditions stated for fu,
and 7, in 1.4. As for 1.1, (i), let  : N — N be any map and let N C N.
Partition NV into the classes

{x"'(n) :n € NN supp i, and B(n) = (M)} , 7€ F(N Nsupp 7,),
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and the complement in N of the union of these classes. This partition is
given by some map ¢ : N — N whose restriction to supp u. equals @ o x.
Then both

(&) @@ and T V0swer B)ORTIO 5 e G(N N supp i),

satisfy the conditions stated for u, and u, in 1.4, while for the remaining
elements 7 of N the two maps in (A) equal 0,. By the above argument we

have
)

ST () = S oo 0o

and
ST T EN) = S (ST e 0 ) =
= B, (px (Nrsuee )y — 52T (7).
| |

The preceding results were obtained without any conditions imposed on
the semitopology 7. However, the following statements will require that 7
satisfies appropriate conditions.

Proposition 1.5 Let M be a T -semitopological Ny-semimodule. Then T
is Ty-semitopology if and only if every u, € MW is unconditionally T -
summable and 31 (1) = S {in : 1 € SUPP fiy}.

Proof. Put Tj := supp uy and m := > {p, : n € supp p.}. Then sp(p.) =
mforall Ty C T € Py, (N) and hence m is a 7-sum of .. Suppose m # m. If
T is T} then there is a neighborhood N of m with m ¢ N. Hence s (u.) ¢ N
for all Ty C T € Ppin(N), whence m cannot be a 7-sum of p,. Since for
any N’ C N,supp pY is also finite, 1.1, (0), is satisfied. As for 1.1, (i), let
@ : N — N be any map. Then ,uNn‘p 1(") is 7-summable for every n € N.
Thus 3.7 (uN'"¢"") exists and has finite support, and is therefore also 7-
summable. The formula in 1.1, (i), is now a consequence of the associativity
of addition in M. Conversely, if T is not a Ti-semitopology then there are
distinct elements m and m of M such that every neighborhood N of m
contains m. Let ng € N and denote by 67™ € M®) the map satisfying
ono™ = m and 67°™ = 0,n € N\{no}. Then §"™ has both m and m as
T-sums and hence is not 7-summable. [



The following definition spells out a separation property of the semitopol-
ogy T that ensures that the elements of MY have at most one 7-sum. It is
obvious that every Hausdorff semitopology has this separation property but
it is not clear that the reverse implication is valid.

Definition 1.6 The semitopoligical Ny-semimodule M 1is said to have the
Unique Extension Property (UEP) of every map f : Ppin(N) — M such that

(0) f(¢) =0,
(i) f(T'UT")y = f(T")+ f(T") T and T" € Ppin(N) with T'NT" = ¢
has at most one continuous extension for P (N).

Note that a map f; Py, (N) — M satisfies 1.6, (0) and (i), if and only if
there is a p. € MY with f(T) = sr(p«), T € Ppin(N).

Lemma 1.7 Let M be a T -semitopological N-semimodule and suppose that
M satisfies (UEP). Then every p, € M™N) is unconditionally T -summable
and ZL(M*) = {pn : m € supp pi}. In particular, T is a T-semitopology.

Proof. See proof of 1.5. [

Lemma 1.8 Let M be a T -semitopological N-semimodule. Suppose that M
satisfies (UEP). Let p',, u!! € S], be such that

given any open subset U of M with 31 (ul) + 321 (u) € U
) there is a Ty € Pyin,(N) with sp(u.) + sr(p) € U for all
Ty C T € Pyin(N).

(4

1o
u*,u*

Then 1, + it is T-summable and ST, + ) = Y05 () + S0y ().
Moreover, if A(u ) is valid for all p., ! € ST, then Si; is closed under
addition.

Proof. Since sr(ul,p)) = sr(ul) + sr(p) the condition in 1.8 implies
that SX7 (L) + 521 (4") is a T-sum of p!, + p”. Hence (UEP) shows that
u'. + p!! is T-summable. If the second condition is satisfied then 1.2 shows
that (. + p)N' = N 4+ "' is T-summable for all N’ C N and that



ST N ™Y = 7 (N + 57 (™). Next let ¢ : N — N be any
map. Then forany n € N

ST+ ) 77H0) = S 090) 4 £ 000
and thus

ST+ i) = STV 4 ()N
1 -1 , .
= STV + ST ().

*

Due to 1.2 and 1.3 both 327 (1) "¢™") and S27 ((1")N'"™") are uncon-
ditionally 7-summable and therefore by the above argument Z;\C,((,u; +
YN0 is T-summable with 7-sum

ST+ 1)V ) = ST EL ()Y ™) + ST ()N ™) =
=L EL ()N ) + 2L (2T, (( ")IN’W»= ,
= ST (()N) + ST ((E)Y) = ST (N + ™'y = ST + p)N

The second condition in 1.8, which is (A, ,») for all !, u” € S7,, is
denoted by (A’).

Lemma 1.9 Let M be a T -semitopological Ny -semimodule. Suppose that M
satisfies (UEP). Suppose that the following condition holds:
(A") for any 7,, 7, € S7; with supp 7, Nsupp 7, = ¢, 7, + fa,is in ST

and X7, (7, + 7,) = 2} (7) + 21, (7,)-

Then for any p, il € STy, pl + pl is in STy and 31, (1, + ) = S0, () +

S ().

Proof. Let u’, " € S],. Choose N = N'UN" such that there are bijections
X' : N — N and ¥ : N — N". Define 7., i, € M~ by

- . /‘1’;'1, :m X() - . 0 amEX,(N)
Moy -—{ 0 ’ (N) and Mo, -—{ ,U;; : m:X//(n)
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By 1i1 both ﬁ* and 7i, are in S, and we have Zf/[(ﬁ*) Zf/[(,u*) and
Zﬂ(ﬁ*) > M( ). Moreover we have supp fi, Nsupp f, = ¢. By assump-

tion we get 7, + g, € S7, and
U@+ 1) =2 (E) + 25 0) = () + 23 (i)
Define ¢ : N — N by

_ X7t m) ,mex(N)
o(m) -—{ Y- 1( ) ,m € x"(N) ,mé€ N.

Then ¢~1(n) = {x'(n), x"(n)} and hence, for any n € N,

(+) a0 = st and @™ = .

Thus we obtain
ST (Ee) = i and S () =
and therefore
it il = S + S,
However, (+) together with 1.5 and 1.7 show that the latter equals ZL(ﬁf_l—i—
) So
-1

).

Since 7i, + fi, is in S]; by assumption, 1.3 shows that the right side of the
last equation is in S7,;. Thus we have u’ + u” € S7, and

_ 1 — -1 _ —
p+pl =S5, @ + 5 =2((m, + )¢

ST+ ) =S (@ + )9 ) = 2L (F + 1) =
=37,m) + S5, = ST, (L) + ST, ().

Addendum 1.10 Let M be a semitopological Ny-semimodule with (UEP).
Then the conditions (A") and (A") are equivalent.

Proof. Either condition is equivalent with: S7, is closed under addition and
ST, is an additive map. n



Lemma 1.11 Let M be a T-semitopological R- semimodule. Suppose that
M satisfies (UEP) and that for some r € R the following condition holds:

(S)) given u, € S7, and any open subset U of M with r¥7,(u.) € U there
" is a Ty € Pyin(N) with rsp(p.) € U for all Ty C T € P (N).

Then Ty, is in ST, and X7, (ru,) = r¥1,(u.) for all u, € S7,.

Proof. Since sp(rp,) = rsp(i.) the condition in 1.11 implies that 7 3 (11, )
is a T-sum of ru,. Due to (UEP) we obtain that rpu, is 7-summable for all
e € ST, with T-sum S0 (rp.) = 30, (1) Let N' € N. Then p!' is
T-summable due to 1.2. Consequently (ru,)Y = r(ul') is T-summable due
to the first part of this proof and we have

Sh(rp)™) = 5 (r () = ri ().
Next let ¢ : N — N be any map. Then for any n € N
ST, ()% ) = r2, (05 )

and hence
1

7 Aop—1 P
S ()N 1) = ru g ()N

N’ﬂgo_l)

).
By assumption >+ ((.) is T-summable and therefore by the above
argument 32 ((rp)¥'"%7") is T-summable with 7T-sum

STLEL ()N ™)) = XS = 1S (ST (e 7)) =
rEh () =S (r(ud) = 2 (rp)™

(S') stands for assumption that (Sr) is satisfied for all r € R.

Definition 1.12 (a) An N-protosummation for the Ny-semimodule M is a
pair (S, Y. ,,) consisting of a subclass Sy of MY and a map Y_,, from Sy
to M such that

(0) for every m € M there is a n,, € N such that the map §™"» : N — N
given by 67" = m and 67" = 0,n, #n € N, is in S)y and satisfies

2o (07m) = m.



(b) An unconditional (resp. unconditional partial) N-summation for the
R-semimodule M is a pair (Syr, Y_,,) consisting of a subclass Sy of MY and
amap Y, : Sy — M such that

(i) MY C Syr and p € MO implies 37, (1) = D {pn 2 0 € supp .},

(ii) for every p, € Sy (resp. p, € MW) and every v, € Sy, pts + v, is in
Suand Y0y p +v) = 35 (1) + D25, (04),

(ii") for every r € R and every p, € Sy, 7. is in Sy and D, (rp.) =

D ar ()

(iii) for every u, € Sy and every map ¢ : N — N, uf_l(") is in Sy for all
n € N and the map 3, (u#”") given by N 3 n+— 3, (uf" ™y e m
is in Sy and satisfies 32, (3, (12 7)) = 324, (1)

Proposition 1.13 Let (Su,Y.,,) be an N-summation for the prenormed
R-semimodule M with value cone C and N-summation (Sc,Y ) for C.
Then (Sm,Y_a) s an unconditional N-summation for M. Conversely if
(Sam, Y ap) ts an unconditional N-summation for the R-semimodule M then
(Sa, X_ay) s an N-summation for M equipped with the trivial prenorm ||, :
M — D and the N-summation (DY, ) for D. Here

D= {0,1} with 0 < 1,a + b = sup{a, b}, ab = inf{a, b},

0 if m=0
> p(ps) = sup{p, : n € N} s s € DV
Proof. The first assertion follows by comparing [2], 3.3, with 1.12. The
second assertion follows by straight forward calculation. ]

Tying 1.12 together with 1.8 - 1.10 we obtain

Theorem 1.14 Let M be a T-semitopological R-semimodule that satisfies
(UEP). If both (A") and (S') are valid then S(T) is an unconditional N -
summation for M.

Proposition 1.15 Let M be a T -semitopological R-semimodule that satis-

fies(UEP). If for every m € M the map M > m — m+m € M is con-

tinuous then for any p, € S7, and any G, € MMy, + 1, is in ST, and

S e+, = S0 (1) + 320, (7). In particular, for any p, € ST, and any
N\T

T € Prin(N), Yar(n) = sr(p) + o ("),

10



Proof. Let 7 := 1 (7,) and let U be any open subset of M with S (11,)+
m € U. Then V := {m : m+m € U} is an open subset of M satisfying
S, (1.) € V. Hence there is a 7 € Pjin(N) such that sp(u.) € V for all

Ty C T € Pin(N). Put Ty := supp fi,. Then T := Ty UT, € Pyin(N) and
sr(ps + B,) = s7(pe) + s7(f,) = sr(p) + mMe U Ty CT € Ppin(N).

Thus Z;\C,(,u*) + m is a T-sum for p, + f,. Since M satisfies (UEP) we
conclude that p, 47, is T-summable with 7-sum 37 (1) +77 = S0, (1) +
Zf/[(ﬁ*), proving the formula at the end of 1.15. In order to prove 1.1, (i),
let ¢ : N — N be any map. Then

ST (e + )N M) = ST (0070 g Ve )

is well defined for every n € N. Since Y1 (FY'™™") has finite support we

have

SLEL (e +B)N ) = 2L (S (YT + @) =
=SS W) + 5L, @) =
=T, L)) + 2L EY ) = 2L () + 2L @) =
=3L (" + 1) =S (e + 1)),

We end this section with two statements involving the conditions (A’)
and (S,).

Proposition 1.16 Let M be a T -semitopological R-semimodule. Let fur-
thermore r € R. If the map M > m — rm € M is continuous then M
satisfies (Sy).

Proof. Let y1, € S7; and let U be any open subset of M with 7 Y% () € U.
Put V := {m € M : rm € U}. Since the map in 1.16 in continuous V is an
open subset of M and we have 3.1 (1) € V. Since p, is T-summable there is
a g € Psn(N) with Sp(u.) € V for all Ty C T € Py, (N). Hence rsr(u.) € U
for all Ty C T € Py, (N). ]

Proposition 1.17 Let M be a T -semitopological R-semimodule. Then M
satisfies (A'), provided that either one of the following two conditions is valid:

11



(i) M? carries a semitopology such that

(a) M?> (m/,m")—m'+m" € M is continuous,
(b) for every open subset U of M? and all .., u" € ST, with (31,(1iL),

Z]\T/[(,u;')) € U there is a Ty € Pan(N) with (s7(p), sr(py)) € U
for all Ty CT € Pan(N);

(i) with M? carrying the product semitopology, M? > (m',m") — m' +
m" € M is continuous.

Proof. Suppose (i) is valid. Let U be any open subset of M and let u!, p! €
ST, satisfy Y7 (ul) + 321 (u") € U. Put V := {(m',m") € M? : m' +
m” € U}. Then V is an open subset of M2 with (37 (i), 37 (1)) € V.
Hence (i), (b), furnishes a Ty € Pun(N) with (sp(y'), sr(p”)) € V for all
To CT € Pau(N). Thus sp(pl) + sp(u!) € U for all Ty C T € Pyy(N) as
had to be shown. the proof using (ii) instead of (i) works similarly. n

Remark 1.18 Let M be a Z]\T/I—semitopological R-semimodule. Then the
initial semitopology on M? for which M? > (m/,m") —» m' +m" € M is
continuous has as its open sets precisely the sets {(m/,m") : m + m" € V},
where V' is some open set of M.

2 The Topology Associated with a N-Proto-
summation

We begin with a construction on M¥*, k any positive integer, where M is a
N-semimodule with N-protosummation & = (S, >_,,)- Let A C M* and
put

AS :={ m!, ..., m*) € M*: there are pul,..., u* € Sy and a cofinal subclass
P of Ps,(N) such that m' = Xy (ul), ..., mF = Sy (pF) and
(sp(ul),...,sr(uF)) € Aforall T € P}.

Lemma 2.1 Let M be a Ny-semimodule with N-protosummation S. Let
furthermore A and B subsets of M*. Then

(0) 9% = ¢ and (M*)S = M*,

12



(i) AC AS,
(ii) A € B implies AS C BS.

Proof. (0) and (ii) are obvious. As for (i), et (m!,..., mF) € A and denote

by u* the element (5:nk’nmk of Sy (see 1.12, (a)), k = 1,...,k. Put P :=
{T € Psu(N) : {nm1,...,npme} €T} Then m¥ =37, (uf) = sp(uX) for all
TePand K =1,... k. [ ]

A C M* is called S-closed precisely when A€ holds. The complement in
MP* of a S-closed subset of M* is said to be S-open.

Lemma 2.2 Let M be an Ny-semimodule with N-protosummation S. Let
furthermore {A; : i € I} be a family of S-closed subsets of M*. Then
N{A; : i € I} is also S-closed. In particular, for any subset A of M* there
is a smallest S-closed subset S(A) of M* that contains A.

Proof. Let (m!,...,mF) € (N{A; : i € I})S. Then there are ul,..., u* €
Su and a cofinal subclass P of Py, (N) with m¥ =", (uf), K =1,...,k
and (sp(ul),...,sr(u¥)) € N{4;:i € I} for all T € P. Hence (m},...,mF
is also in A = A;,4i € I, and thus in N{4; : i € I}. ]

Lemma 2.3 Let M be an Ny-semimodule with N-protosummation S. Let
furthermore {A;,..., A, be a finitely many S-closed subsets of M*. Then
A1U...UA, is also S-closed.

Proof. It suffices to let p = 2. Let A and B be S-closed subsets of
Mk, If (m!,...,mF) is in (AU B)® then there are pl, ..., u* € Sy and
a confinal subclass P of Pg,(N) such that m® = >, (uf),K = 1,... )k
and (sp(ul),...,sr(u¥) € AUB forall T € P. Put Py := {T € P :
(sp(ul), ..., sp(uF)) € A} and define Pp similarly. Then P = P4, U Py
whence one of P4 and Pg, say Py, is cofinal in Pg,(N). Thus (m!,..., mF)
is in AS = A and hence in AU B. ]

Proposition 2.4 Let M be a Ny-semimodule with N-protosummation S.
Let furthermore A and B be subsets of M*. Then

(0) S(¢) = ¢ and S(M*) = M*,
(i) Acs(4),
(ii) A C B implies S(A) C S(B),

13



(iii) AS(5(4)) =S(4),
(iv) A= S(A) if an only if A = AS.

Proof. Clear from Lemma 2.1 and Lemma 2.2. |

By Proposition 2.4 the map given by P(M*) 3 S(A) € P(M*) is a
closure operator. The associated grid G(S) (see [2], A.15 and A.16) gives rise
to the semitopology G(S) (see [2], A.3), which on account of 2.3 is in fact a

topology T%(S). Next we develop some properties of 7%(S). We shall write
T(S) instead of T(S).

Lemma 2.5 Let M be a Ny-semimodule with N-protosummation S. Then

(i) A C M* is S-closed if and only if for every (ul, ..., u*) € S%, for which
there is a cofinal subclass P of Pay(N) with (sp(ul, ..., sp(u¥)) € A for
adlT e P)Y (1), ..., 3, (k) € A holds;

(ii) U C MF* is S-open if and only if for every (ul,...,mF) € Sk, with

on(mh), .3 (uF) € U there is a Ty € Pan(N) such that (sp(ul),
ooy sp(uF)) €U for all Ty S T € Pau(N);

(iii) for every subset A of M* A C AS C S(A).

Proof. (i) and (ii) are immediate consequences of the definition of S-open
resp. S-closed. (iii) follows from Proposition 2.4, (i). |

Addendum 2.6 Let M be a N-semimodule with N-protosummation S. If
s 15 in Sur then for every T (S)-open subset U of M with Y ,,(1«) € U there
is a Ty € Pan(IN) such that st(uy) € U for all Ty CT € Psn(N).

Proof. This is a special case of Lemma 2.5, (iii). n

Note that Addendum 2.6 states that for any N-protosummation S the
sum Y ,,(p) of every element u, € Sy can be obtained by the limit process
(for a suitable topology) described at the beginning of section 1.

Lemma 2.7 Let M be a Ny-semimodule with N-protosummation S. Let
furthermore m € M. Then the map M > m — (m,m) € M? is continuous
with respect to the topologies T(S) and T*(S).

14



Proof. We have to show that the inverse image of any S-closed subset of
M? under the above map is S-closed. Let A C M? satisfy A = AS. The
inverse image of A is the set B = {m € M : (m,m) € A}. We have (with
the obvious omissions)

B% = {m' € M :there is a m, € Sy and a cofinal subclass P of Pg,(N) with
m' =3y (p,) and sp(u.) € Bforall T € P} =
= {m' e M:m'=3y(u) and (m, sr(1,)) € A for all T € P}.

Let @, := 6™™m. Put P := {T € P: Ny €T}. Thenm = ), (#,) and
(sr(m,), sT(i.)) € A for all T € P. Hence (m, m') € AS = A and therefore
m' € B. u

Lemma 2.8 Let M be a Ny-semimodule with N-protosummation S = (Sn, D ,y)
such that Syr is closed under addition and that 18 an additive map. Then
the map M* > (mt,... . mF) —» m! + ...+ mF k =1,2,..., is continuous
with respect to the topologies T*(S) and T(S).

Proof. Let A C M with A = AS. The inverse image of A is the set
B={(m',...,m*) e M* :m' + ...+ m* € A}. We have

B® = {m!,...,m") € M* :thereis a (ul,...,u*) € S%, and a cofinal
subclass P of Pg,(N) with m* = o (uX), K =1,...,k and
(sp(pl),...,sp(u¥) € Bforall T € P} =

= {(m',...,m*) € M*: thereisa (ul,...,mF) € S¥ and a cofinal
subclassP of Py, (N) with m* = ¥, (uf), K =1,...,k, and
se(pl) + ...+ sr(p¥) € A for all T € P}.

By assumption pl + ...+ p¥ is in Sps. Since sp(ul+ ...+ p¥) = sp(pl) +
oo+ sp(uf) € Aforall T € P. We obtain >, (ul + ...+ uF) € AS = A.

Since 374 (ks + -+ pf) = D4 (0e) + oo+ 2 (ph) = mt 4.+ mP by
assumption, it follows that (m!,...,m*) is in B. ]

Lemma 2.9 Let M be a R-semimodule with N -protosummation S = (Sar, > as)
such that Sy is closed under left multiplication with any r € R and that
Sourps) = 1>, () for allr € R and p, € Syr. Then for every r € R the
map M > m+— rm € M is continuous with respect to the topology T (S).
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Proof. Let A C M with A = AS. Then the inverse image of A is the set
B ={me& M :rm e A}. Hence we obtain

B® = {m € M :there is a p, € Sy and a cofinal subclass P of Ps,(N)
with m = Xy (u.) and (sp(u.) € B forall T € P} =
= {(m € M : thereis a (u. € Sy and a cofinal subclassP of Pg,(N)
with m = Xy (p.), and rsp(p.) € A for all T € P}.

Since 7, is in Sy and sp(rp.) = rsr(p.) is in A for all T € P we have

Yoaur(rp) =7, (1) in A and thus m = ), () in B.
n

Lemma 2.10 Let M be a Ny-semimodule with N-protosummation S. Then
T*(S) is a Ti-topology if and only if every (ul,...,u*) € S¥ for which
there is a cofinal subclass P of Pgn(N) and a (mt,...,mF) € M* such that
(sr(pl), ..., sr(pk) = (mh,...,mF) for allT € P satisfies (3 ,,(1l), ..., >0,
(uF)) = (m',...,m"). In particular, if T(S) is a Ty topology then so is each
T*(S), k=2,3,....

Proof. Suppose that 7%(S) is a Ti-topology and that (ui,...,u~) € S,
satisfies the hypotheses stated in Lemma 2.9. Put m* := Y, (uX), K =
1,...,k. If U is an S-open subset of M* containing (m!,...,m*) but not

containing (m!,...,m*) then (sp(mul),...,sr(u¥) € U and we have a con-
traction to Lemma 2.5, (ii). In order to prove the converse let (m!,...,mF) €
M*. Then {(m!,...,m*)}S consists of all (m*,..., m*) for which there is a

(@k,...,m%) € S% and a cofinal subclass P of Pg,(N) such that m¥% =
Su@EE), K =1,...,k, and (sp(@),...,sr(@k) = (m!',...,m*) for all T €
P. Hence we obtain (i, ..., mx) = (O 0,HL), - Dop (B8F) = (m?, ..., mF),
that is {(m?,...,mF)}s = {(m',...,m*)}. This means that 7*(S) is a 13-
topology. |

Proposition 2.11 Let M be a Ny-semimodule with N-protosummation S
such that T(S) is a Ty-topology. Then every p, € Sy satisfies:

if m € M 1is such that for each S-open subset U of M withm € U
there is a Ty € Pan(N) with sr(p.) € U for all Ty CT € Psy(N)

then m = (s)-
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Proof. Suppose there were a m contradicting the stated property with
respect to some p, € Sy. Since T(S) is a Ti-topology there is an S-open
subset U of M with m € U and }_,,(1+) & U such that sp(u.) € U for all
Ty € T € P, where Tj is chosen suitably. This, however, is in violation of
Lemma 2.5, (ii). n

This section closes with a construction of S(A4), whee A is any subset
of M* and M is a Ny-semimodule with N-protosummation & = (S, >_,,)-
Since A C S(A) we have A C A% C (S(A))S = S(A). Put AS" := A4S and
define by transfinite induction, for any ordinal 7,

AST (AS",)S ,if n is a successor ordinal with n =17n'+1
u{AS" : 1’ <n} ,otherwise.

With this notation we obtain

Proposition 2.12 Let M be a Ny-semimodule with N-protosummation S
and let A C M*. Then there is an ordinal ny with card(ng) < card(M¥) such
that S(A) = AS™.

Proof. We have A C AS” C AS" for any ordinals ' and 7 with 7' < 7.
Hence there is an ordinal 7 with card(ny) < card(M*) and A5™ = A" for all
no < n. We claim that AS" C S(A) holds for any ordinal 5. This is true for
n =1 due to Lemma 2.5, (iii). If 7 is a successor ordinal with n =7+ 1 and
AS" ¢ S(A) then A" = (AS"’)S C (S(A))® = S(A). If n is not a successor
ordinal and AS” C S(A) for all 7f < 1 then AS" = U{AS" : i <y} C S(A).
This means that we have AS™ C S(A). Hence A € AS™" = (AS™)S = AS™
and therefore S(A) C AS™ | that is S(A4) = AS™. ]

3 Morphisms of R-Semimodules with
N-Protosummations

Given any map f : M — M’ and any p, € MY we denote by fV(u,) the
map N > n+— f(u,) € M'. Hence fV(p,) is in MV,

Definition 3.1 Let M and M’ be R-semimodules with N-protosummations
S = (Sw,>_p) resp. S" = (Swr,>.p)- Then the homomorphism f :
M — M' of R-semimodules is called a morphism of R-semimodules with
N -protosummation if

17



(i) f"(Sm) € S,
(1) fOpr (i) = 2ar (F¥ (1)), i € S

Lemma 3.2 Let M and M' be R-semimodules with N -protosummation S =
(Sars Dopg) resp. S = (Swr, D). Let furthermore f : M — M' be a
morphism of R-semimodules with N-protosummations. then supp f(u,) C
supp ps for all p, € Syr. In particular, if 0, € Sy then f(0,) = 0, € Syp.
If Sy is closed under addition and ),, is additive then )_,, is additive
on fN(Su). If Sy is closed under left multiplication by v € R and _,,
commutes with left multiplication by r then so does Y, on fN(Su).

Proof. We only check the second assertion. If Sy, is closed under addition
and fu, pi, € Sy then () + fY(pl) = fN(pe + ) € Sy and

S (FY () + FY (L)) = Sagy (P (e + 122)) = F(Sna (e + 1))

= F(Sa () + S0 (1)) = F(Sar () +f (Ear (1) = Sawr (Y (1)) +Zw (Y (112)).-
|

Proposition 3.3 Let M and M' be R-semimodules with N -protosummation
S resp. S'. Let furthermore f : M — M' be a morphism of R-semimodules
with N-protosummations. Then for every k € N, f* : M*¥ — M'* is continu-
ous with respect to the topology T*(S) resp. T*(S").

Proof. Let A C M* and let (m?!,...,mF) € AS. Then there are pl, ..., uf €
Sy and a cofinal subclass P of Py, (N) with m® = >, (uX), K =1,... )k
and (sp(ul),...,sp(uF)) € Afor all T € P. Hence

fFm™) = fEu () =S (fY (1) S K=1,...,k

and

(sr(f™ (1), se(FY () = fE(sr(m), -, sr(uf)) € fF(4) T eP.

Thus f(m!,...,m*) € (f*(A))S and therefore f*(AS) C (f*(A))S".

Now suppose that A’ C M'* is T*(S")-closed. Due to Proposition 2.4,
(iv), this means that A’ = A'S". Put A := (f¥)~1(4"). If (m',...,mF) € AS
then

(f(mY),..., f(m*) = fE(m',... . m*) e A'S = A

and therefore (m!,...,m*) € A. Thus A = AS  that is A is T*(S)-closed. m
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Proposition 3.4 Let M and M' be semitopological R-semimodules with semi-
topolgoy T resp T' and suppose that M' satisfies (UEP). Let furthermore
f M — M be a continuous homomorphism of R-semimodules. Then
f is a morphism of R-semimodules with N-protosummations SP(T) resp.

SP(T") as well as a morphism of R-semimodules with unconditional partial
N-summation S(T) resp. S(T").

Proof. Let u* € Sy withm := 3", (ps). Then f(sp(ps)) = sr(f¥ (), T €
Pgn(N), whence f(m) sia T'-sum of f¥(u.). Since M’ satisfies (UEP), f~ (u.)
is T-summable. In particular, Definition 3.1, (i) and (ii), are satisfied. The

second part of Proposition 3.4 follows from the formula f(}2,, (1Y) =

> ar (N (m))™). =
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