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Abstract

Each Efremovic-proximity space (X, §) has a compact Hausdorff extension Y so that two sets in X
are near iff their closures in Y have a non-empty intersection. Moreover, X can be viewed as a dense
subspace of Y. Lodato and Doitchinov generalized these results by considering more genral proxim-
ity structures such as Lodato-proximities and certain supertopologies, and by droping the Hausdorff
requirement for Y. Here we study so-called supernearness spaces, a common generalization of Her-
rlich’s nearness spaces and supertopological spaces, and show that each “contigual” supernearness
space admits a compact topological extension as described above.

1 Introduction

Topological extensions are closely related to near-structures of various kinds. As a classical example we
mention the Smirnov compactification [19] of a proximity space X that is a compact Hausdorff space
Y, which contains X as a dense subspace and for which it is true that a pair of subsets of X is near iff
their closures in Y meet. Lodato [16] [17] generalized this result to weaker conditions for the proximity
and the space Y using “bunches” for the characterization of the extension. Ivanova and Ivanov [10]
studied contiguity spaces and bicompact extensions such that a finite family of subsets of X are contigual
iff there is a point of Y that is simultaneously in the closure in Y of each set in the family.

Herrlich [8] found a useful generalization of contiguity spaces by introducing nearness spaces, and
Bentley [2] showed that bunch-determined nearness spaces are closely related to certain topological ex-
tensions.

Doitchinov [5] introduced the notion of supertopological spaces in order to construct a unified theory
of topological, proximity and uniform spaces, and he proved a certain relationship of some special classes
of supertopologies — called b-supertopologies — with compactly determined extensions.

Recently, supernear spaces were introduced by the author [12] [13] [14] in order to define a common
generalization of nearness spaces and supertopological spaces as well. A special class of the so-called
“clump-determined” supernear spaces are in one-to-one correspondence with certain symmetrical exten-
sions and, moreover, in the non-symmetrical case we also have a neat internal characterization of the
corresponding supernear spaces.

In this paper we study the relationship between compact topological extensions and the so-called
“contigual supernear spaces”, which are a common generalization of the supertopological spaces as well
as the Lodato-proximity spaces.

2 Supernear spaces

As usual, PX denotes the power set of X, and we use &% to denote a collection of bounded subsets of
X, also known as a B-set, i.e., %X C PX satisfies the following three axioms:



(B1) B' C B € #% implies B' € #%;
(B2) 0 € #%;
(B3) z € X implies {z} € #*.

If X and %Y are B-sets on X and Y, respectively, a function f : X —> Y is called bounded, if it
preserved bounded sets.

We recall the corefinement relation << on P(PX) given by S < A <= VF € S 3F € S1.F> D
F. For brevity we also write % U . for the set { i UFs | F; € S, F» € S }.

2.1 Definition. For a B-set X a function S : #X — P(P(PX)) is called a supernear operator or
a supernearness on %%, and the pair (%X, 9) is called a supernear(ness) space, iff

(SN1) B € #X and % < % € S(B) imply % € S(B);
(SN2) S(9) = {0} and B ¢ S(B) for cach B € #X;

(SN3) B' C B € #X implies S(B') C S(B);

(SN4) 7 € X implies {{z}} € S({z});

(SN5) B € #¥ and % U.% € S(B) imply A € S(B) or % € S(B);
(SN6)

SN6) B € #* and {cls(F) | F € #} € S(B) for some ¥ C P(PX) imply . € S(B), where
cs(F) :={z € X [{{z},F} € S{z}) }.

Elements of N(B) are called B-near collections. Given a pair of supernear spaces (8%,S), (#¥,T),
a bounded map f : X - £ is called a supernear map or shortly sn-map, iff

(sn) B € #% and .¥ € S(B) imply { f[F]| f € &} € T(f[B)).

A map will also be referred to as a supernear map by saying it preserves B-near collections in the above
sense. We denote by SN the corresponding category.

2.2 Examples. Consider a B-set % on X.

(i) For a nearness structure ¢ on X we obtain a supernear operator on &% by setting

({0} if B=10
SC(B) -—{{yng|5ﬂu{B} € (} otherwise

(ii) For a Kuratowski closure operator ¢l on X, we obtain a supernear operator on &% by setting

S, (B

C

):={ CPX|Bese{clF)|Fe.}}
where in general the operator sec on P(PX) is defined by
secl ={TCX|VMe#.TNM#D}
(iii) For a Leader-proximity [11] § on X we obtain a supernear operator on &% by setting
S5(B) == {.# C PX | # C4(B)}

where 6(B) := {F C X | B6F }.



(iv) For a quasi-uniformity % on X we obtain a supernear operator on %% by setting
Su(B):={# CPX|Wew. ({UF)|Fesu{B}}+0}

where U(F) :={y€e X |3z € F. (z,y) e U }.
(v) For a supertopology § on X (see [4]) we obtain a supernear operator on &% by setting
Se(B) :={ C PX|.% Csech(B)}
where 6(B) denotes the neighborhood system of B with respect to 6.

(vi) We first introduce the category CEXT, whose objects are triples E := (e, #%,Y) — called com-
pactly determined extensions — where X = (X, clx), Y = (Y, cly) are topological spaces (given
by closure operators), %X is a B-set on X and e : X — Y is a function satisfying the following
conditions:

(CE1) A € PX implies clx (A) = e cly (e[A])];
(CE2) cly(e[X]) =Y, which means that the image of X under e is dense in Y.

(CE3) z € X and y € cly ({e(z)}) imply e(z) € cly({y}), which means that YV is symmetric
relative to e[X].

(CE4) {cly(e[A])| A C X } is a base for the closed subsets of Y, which means that the extension E
is strict in the sense of Banaschewski [1].

(CE5) For any y € Y there exists a set A C X such that y € cly(e[A4]), and cly (e[4]) is compact,
which means that the extension is compactly generated.

Morphisms in CEXT have the form (f,g) : (e, 2%,Y) — (¢/, % ,Y"), where f : X -~ X', g :
Y — Y’ are continuous maps such that f is also bounded, and the following diagram commutes:

X —*>v

b
X'—,>Y'
If (f,g) : (e, BX,Y) = (¢/,BX,Y") and (f'.g') : (¢, BX,Y") - (¢",BX",Y") are CEXT-

morphisms, then they can be composed according to the rule (f',¢') o (f,g9) := (f' o f,¢' 0 g) :
(e, BX,Y) — (e, 8% ,Y"), where “o” denotes the composition of maps.

Given a compactly determined extension E = (e, 4% ,Y), we now obtain a supernear operator on
#X by setting

SE(B):={ C PX|VF € #3y € cly(e[B]). y € cly(e[F])}
2.3 Remark. We pointed out that — in correspondence to the above-mentioned examples — the category
SN of supernear spaces contains the following categories as full subcategories:
- the category TOP of topological spaces and continuous maps;

- the category PROX, of Leader proximity spaces and J-maps, hence also PROX , the category
whose objects are Lodato proximity spaces;

- the category NEAR of nearness spaces and nearness-preserving maps;



- the category CONT of contiguity spaces and c-maps;
- the category UNIF of uniform spaces and uniformly continuous maps; and at last

- the category STOP of supertopological spaces and bounded continuous maps.

2.4 Lemma. For a compactly determined extension E = (e, #%,Y) the supernear operator S¥ of
Example 2.2(vi) has the following additional properties:

(S) S¥ is symmetric, which means
Be#* and & €S”(B) imply {Blus € ({S"(F)|Fe(sn®X)u{B}}

(A) SF is additive, which means

By UB, € #% implies SF(B;UB,) C SF(B,)uUSE(B,)
(CI) SP is closure-isotone, which means
clse(B) € #% implies S¥ (clg=(B)) C S¥(B)
(E) S? is endogenous, which means
Be®* implies | J{# CPX |5 €S¥B)}e S¥B)
Moreover, the closure operator clge coincides with the topological closure operator clx .

Proof: First we note that for each supernearness S on &% the corresponding hull operator clg is always
topological, in particular this applies to S¥. Then it is straightforward to verify the listed properties. In
order to prove the equality of the closure operators, consider A € PX and z € clx(A). Then, by (CE1),
e(z) € cly(e[A]) N cly ({e(x)}), hence {{z}, A} € SE({z}). Thus z € clg=(A).

Conversely, consider z € clge(A4). Then {{z}, A} € S¥({z}), which implies y € cly(e[A]) for some
y € cly({e(x)}). As a consequence of (CE3) we get e(z) € cly(cly (e[A])) = cly (e[A]), hence in view of
(CE1) we obtain z € e ![cly (e[A])] = clx(A), which was to be shown. U]

3 Functorial relationships between CEXT and SN

Now, we are going to construct a functor from the category CEXT to the category SN.

3.1 Theorem. We obtain a functor F : CEXT — SN by setting
(a) F(E):= (#X,8F); for a compactly determined extension E := (e, X,Y)
(b) F(f,g) := f for a CEXT-morphism (f,g) : E := (e, BX,Y) - E' := (¢!, % ,Y")

Proof: In view of Lemma 2.4 we already know that F(E) is an object of SN with the corresponding
additional properties.

Now let E := (e, X,Y) : (f,9) = E' :=(¢/, X ,Y") be a CEXT-morphism. It has to be shown
that f preserves the near-collections from F(E) := (#%,SF) to F(E') := (%X ,SF"). Without loss
of generality, let B € #% \ {0} and .¥/ € SE(B). Now consider F € .. By definition, there exists
y € cly(e[B]) such that y € cly(e[F]). The hypothesis implies g(y) € g[cly (e[B])] and therefore g(y) €
cly(gle[B]]) = cly:(e'[f[B]]), since (f, g) is a CEXT-morphism. Because y € cly (e[F]), we have g(y) €
cly:(e'[f[F]]), which results in { f[F]| F € %} € S¥ (f]B]). O



To obtain a related functor in the opposite direction, we introduce the notion of so-called B-clips for
each bounded set B € %% \ {#}. This is motivated by the following facts.
Given a (compactly determined) extension E = (e, #%X,Y), it is possible to define a function ¢ :
Y - P(PX) by setting
ty) :={T S X |yecly(e[T])}

Moreover, for each B € X \ {0} we put

= J{t) |y € cly(e[B]) }

Now every B-near collection . € S¥(B) satisfies ¥ C €Z; in fact F € . implies the existence of some
y € cly (e[B]) such that y € cly (e[F]), hence F € t(y) and consequently F € €5.
This leads to the following definition.

3.2 Definition. Let (%%, S) be a supernear space. For B € %% \ {#} a subset ¥ C PX is called a
B-clip in S, provided that

(C1) 0 ¢ %F;
(C2) C1 €€ and C; C Cy € PX imply Cy € €
(C3) CLUCy € € implies C; € € or C2 € 6
(C4) B e ¢;

(C5) cls(C) € € implies C € €;

(C6) € € S(B);

(CT) N{cls(T)|T € €} = B implies the existence of a finite subset 6o C € with ({ cls(T)|T €% } =0

Another interesting example for this notion is given by the set system
ex(z) ={T CX|z€cl(T)}

for x € X, which is a {z}-clip in S. Moreover, ex(z) is a maximal element in S({z}) ordered by set-
inclusion. This can be shown as follows. Let % be an element of S({z}) and assume ex(z) C ¥. By
hypothesis we have {z} € €. Now, C € ¥ implies {{z},C} € S({z}), because of {{z},C} << ¥. Hence
we get x € clg(C) which means C' € ex(x).

With respect to the above-mentioned motivation and Remarks, we naturally arrive at the following
definition.

3.3 Definition. A supernear space (#X,S), as well as 3, is called clip-determined, provided that
(CL) B € #% \ {0} and .# € S(B) imply the existence of a B-clip ¢ with .7 C €.

3.4 Remark. In addition to the properties of Lemma 2.4, the supernearness S¥ as defined in Example
2.2(vi) is also clip-determined.

We now prepare the introduction of a functor G : SN — CEXT in the opposite direction to F.



3.5 Lemma. Let (8%,S) be a supernear space. We put
X:={¢ CPX|3Be %X\ {0}.% is a B-clip}

and for each A C X we set R R R

cdg(A)={¢eX|[VAC?}
where (YA := {F C X |V¢ € A. F € €} (so that, by convention, (A= PX if A =). Then cl; is a
topological closure operator on X.

Proof: Straightforward. L]

3.6 Theorem. For supernear spaces (%%,S) and (#Y,T) let f : X — Y be an sn-map. Define a
function f : X — Y by setting for each € € X

f(@):={DCY|f (D) €%}
Then the following statements are valid.
(1) f is a continuous map from (X, clg) to (v, cly).
(2) The composites f oex and ey o f coincide, where ex : X — X is the function that assigns the
{z}-clip ex(z) to x.

(3) {fIC]IC €%} C f(%).
4) Nex[Bl:=N{ex(z) |z€e B} ={F CX|B¢€clg(F)} for every BC X.

Proof: We prove statement (2), all other verifications are left to the reader. Let z be an element of
X. We have to show the validity of f(ex(z)) = ey(f(z)). To this end, let F € ey(f(z)). Then
f(z) € clp(F), hence z € f[clp(F)], and consequently f[clr(F)] € ex(z). Thus F € f(ex(z)),
which proves the inclusion ey (f(z)) C f(ex (z)). Since ey (f(x)) is maximal with respect to set-inclusion

on T({f(x)})\ {0} and since { clr(D) | D € f(ex(z)) } corefines { f[V]|V € ex(x)}, the hypothesis that
f is an sn-map implies the desired equality. ]

3.7 Remark. With respect to Lemma 2.4 and Remark 3.4 we summarize that the supernear operator
SF satisfies the axioms of being symmetric, additive, closure-isotone, endogenous and clip-determined.

These facts motivate the following notion.

3.8 Definition. A supernear operator on %%, and also the corresponding space, is called contigual, if
the above-mentioned axioms for the operator are satisfied. Moreover, we denote the corresponding full
subcategory of SN by CSN.

3.9 Theorem. We obtain a functor G : CSN — CEXT by setting
(a) G(#%,S) := (ex,BX,X) for any contigual supernear space (#%,S) with X := (X, cls) and

A ~

X :=(X,clyg);

(b) G(f) == (f,f) for any sn-map f : (BX,S) - (BY,T).



Proof: In view of (SN6) it is straightforward to verify that cls is a topological closure operator on X.
By Lemma 3.5, we also have the topological closure operator cly on X. Therefore we obtain topological
spaces with the B-set #%X, and ex : X — X is a continuous map according to Theorem3.6.

To establish (CE1), let A be a subset of X and suppose z € cls(A). Then, by Theorem 3.6(4) the
inclusion ex[A] C ex(z) follows. This means that ex(z) € cly(ex[A]), hence = € ex'[clx(e[A])].
Conversely, let  be an element of € ex'[cl4 (e[4])]. Then by definition we have ex (z) € clg(ex[A]), and
consequently (Jex[A] C ex(z). By Theorem 3.6(4) we obtain A € ex(xz), which means z € clg(A).

To establish (CE2), let 4 € X and suppose € ¢ cly (ex[X]). By definition we get ex[X] € ¥, so
that there exists a set F' € [ ex[X] with F' ¢ €. By Theorem 3.6(4) the inclusion X C clx(F') holds.
Since B € ¥ for some B € #% (see also (C2)) and in view of axiom (C4), we get cls(F) € €, hence
F € €, because of axiom (C5). But this is a contradiction, which shows ¢ € cl4 (ex[X]).

To establish (CE3), let 2 be an element of X such that ¢ € clg({e(x)}). We must show ex(z) €
cl4({€}). By hypothesis we have ex(z) C ¢ and moreover ¢ € S(B) for some B € #* \ {0}. Since
{z} € ¥ and since ¥ is symmetric, we get {B} U% € S({z}) with ¥ << {B} U %. According to (SN1)
we then get € € S({z}), and since ex(z) is maximal with respect to (S({z}) \ {0}, C), € coincides with
ex (z).

By hypothesis f : (#%,S) = (#Y,T) is an sn-map, in particular f is continuous and bounded. Tt
remains to show that the following diagram commutes

X

)
fl
Y ——

€y

N

f

B —

~

To this end let z be an element of X. We must show (f o ex)(z) = (ey o f)(z).

“C”: D e (foex)(x) = flex(x)) means f~[clp(D)] € ex(z), hence z € cls(f~[clr(D)]). In
particular we have f(z) € clp(f[f~![clr(D)]]), since f is continuous. But now cly(clr(D)) C clp(D)
implies D € ey (f(z)).

“2”: D € ey(f(z)) implies f(z) € clr(D), hence z € f'[clr(D)] and consequently = € f~'[clr(D)]).
This implies f~[clr(D)] € ex(z), which means C' € f(ex(x)). Finally, this establishes that the compo-
sition of sn-maps ist preserved by G.

Axiom (CE4) can be verified in an indirect manner, and (CE5) should be proven according to (C7)
in the definition of a B-clip in S. U]

3.10 Theorem. Let F : CEXT — SN and G : CSN — CEXT be the functors given in Theorems
3.1 and 3.9. For each object (#%,S) of CSN let t(%#%,S) denote the identity map t(#%,S) := idx :
F(G(#%,S)) = (#%,S). Thent: FoG — lgsn is a natural equivalence from F o G to the identity
functor 1gsn, i-e., idx : F(G(#%X,89)) - (#%,9) is an isomorphism for each CSN -object (%% ,S) and
the following diagram commutes for each sn-map f : (#%,8) — (#Y,T)

F(G(BX,5)) —2> (8%, 5)

F(G(f))l lf

F(G(#Y,T)) —— (#¥,T)

Proof: The commutativity of the diagram is obvious, since F(G(f)) = f. It remains to prove that
idx : F(G(#*,8)) = (#*,5) is an sn-map for each object (%#%,5) of CSN and vice versa. To fix
the notation, let S’ be such that F(G(%%X,S) = F(ex,#*,X) = (#*,5"). It suffices to show that for



each B € #% \ {0} we have S'(B) C S(B). To this end assume .’ € S'(B). In view of Lemma 2.4(iv)
it suffices to establish ' C |J{ ¥ C PX | ¥ € S(B) }. But F € %/ implies the existence of an element
% € cly(e[B]) such that ¢ € clg(ex([F]), hence (ex[B] C ¥.

In view of Theorem 3.6(4) we get B € ¢ and € € S(B') for some B' € % \ {#} (note in particular
that € is a B'-clip for some bounded set B'). Since S is symmetric, we get {B'} U% € S(B) and
¢ << {B'}U%, hence ¥ € S(B) according to (SN1). On the other hand, we also know that the
statement € € cly (ex[F]) holds, which implies ' € ¥ according to Theorem 3.6(4) and the definition
of the hull operator cly, respectively.

In the opposite direction consider . € S(B). Since S in particular is clip-determined, we can choose
a B-clip ¥ such that ¥ C %. In order to show . € S’(B) we need to verify that for F' € . we should
have

(1) € € clg(ex|[B]), and
(2) € € clg(ex[F)).
So let F' be an element of .¥.

(1) By definition of cly it suffices to establish (Jex[B] C €. So let D be an element of () ex[B], which
means B C clg(D). Since B € € according to (C4), we get cls(D) € €, hence D € € by (C5).

(2) D € Nex|F] implies F' C clg(D). Since F' € € by hypothesis, we get cls(D) € ¥, and analogously
we infer D € €, which concludes the proof. ]

Now we are able to formulate the main theorem of this paper, which is a consequence of the preceding
Lemmata and Theorems, respectively.

3.11 Theorem. Let (%%,S) be a supernear space. Then the following are equivalent:
(i) (#%,9) is contigual;

(ii) there exists a compact extension (e, #%,Y) such that for each B € #%\{0} the elements .# € S(B)
are characterized by
cly (e[B]) € sec{ cly(e[F]) | F € &}

(iii) there exists a topological space (Y, cly) and a continuous map f : X — Y that satisfies
- cs(A) = fcly (f[A])] for each A C X;
- f[X] is dense in Y;
- Y is symmetric relative to f[X];
- {cly(e[A]) | A C X } forms a base for the closed subsets of Y;
-Vy € YIAC X.y € cly(e[A]) and cly (e[A]) is compact;

- for each ¥ € %% \ {0} the elements .# € S(B) are characterized by the fact that for each
F € . there exists y € cly(e[B]) such that y € cly (e[F]). []
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