Compact extensions and contigual supernearness

Dieter Leseberg

December 17, 2002

This paper is dedicated to our friend and colleague Dieter Pumplün on the occasion of his 70th birthday.

Abstract

Each Efremovic-proximity space (X, δ) has a compact Hausdorff extension Y so that two sets in X are near iff their closures in Y have a non-empty intersection. Moreover, X can be viewed as a dense subspace of Y. Lodato and Doítchinov generalized these results by considering more genral proximity structures such as Lodato-proximities and certain supertopologies, and by droping the Hausdorff requirement for Y. Here we study so-called supernearness spaces, a common generalization of Herrlich's nearness spaces and supertopological spaces, and show that each "contigual" supernearness space admits a compact topological extension as described above.

1 Introduction

Topological extensions are closely related to near-structures of various kinds. As a classical example we mention the **Smirnov compactification** [19] of a proximity space X that is a compact Hausdorff space Y, which contains X as a dense subspace and for which it is true that a pair of subsets of X is near iff their closures in Y meet. **Lodato** [16] [17] generalized this result to weaker conditions for the proximity and the space Y using "bunches" for the characterization of the extension. Ivanova and Ivanov [10] studied contiguity spaces and bicompact extensions such that a finite family of subsets of X are contigual iff there is a point of Y that is simultaneously in the closure in Y of each set in the family.

Herrlich [8] found a useful generalization of contiguity spaces by introducing nearness spaces, and Bentley [2] showed that bunch-determined nearness spaces are closely related to certain topological extensions.

Doítchinov [5] introduced the notion of supertopological spaces in order to construct a **unified** theory of topological, proximity and uniform spaces, and he proved a certain relationship of some special classes of supertopologies – called b-supertopologies – with compactly determined extensions.

Recently, supernear spaces were introduced by the author [12] [13] [14] in order to define a common generalization of nearness spaces and supertopological spaces as well. A special class of the so-called "clump-determined" supernear spaces are in one-to-one correspondence with certain symmetrical extensions and, moreover, in the non-symmetrical case we also have a neat internal characterization of the corresponding supernear spaces.

In this paper we study the relationship between compact topological extensions and the so-called "contigual supernear spaces", which are a common generalization of the supertopological spaces as well as the Lodato-proximity spaces.

2 Supernear spaces

As usual, PX denotes the power set of X, and we use \mathscr{B}^X to denote a collection of bounded subsets of X, also known as a B-set, i.e., $\mathscr{B}^X \subseteq PX$ satisfies the following three axioms:

- (B1) $B' \subseteq B \in \mathscr{B}^X$ implies $B' \in \mathscr{B}^X$;
- (B2) $\emptyset \in \mathscr{B}^X$;
- (B3) $x \in X$ implies $\{x\} \in \mathscr{B}^X$.

If \mathscr{B}^X and \mathscr{B}^Y are **B**-sets on X and Y, respectively, a function $f:X\to Y$ is called *bounded*, if it preserved bounded sets.

We recall the *corefinement* relation \ll on P(PX) given by $\mathscr{S}_2 \ll \mathscr{S}_1 : \iff \forall F_2 \in \mathscr{S}_2 \, \exists F_1 \in \mathscr{S}_1. F_2 \supseteq F_1$. For brevity we also write $\mathscr{S}_2 \cup \mathscr{S}_1$ for the set $\{F_1 \cup F_2 \mid F_1 \in \mathscr{S}_1, F_2 \in \mathscr{S}_2\}$.

- **2.1 Definition.** For a **B**-set \mathscr{B}^X a function $S: \mathscr{B}^X \to P(P(PX))$ is called a **supernear operator** or a **supernearness** on \mathscr{B}^X , and the pair (\mathscr{B}^X, S) is called a **supernear(ness) space**, iff
- (SN1) $B \in \mathcal{B}^X$ and $\mathcal{S}_2 \ll \mathcal{S}_1 \in S(B)$ imply $\mathcal{S}_2 \in S(B)$;
- (SN2) $S(\emptyset) = {\emptyset}$ and $\mathscr{B}^X \notin S(B)$ for each $B \in \mathscr{B}^X$;
- (SN3) $B' \subseteq B \in \mathscr{B}^X$ implies $S(B') \subseteq S(B)$;
- (SN4) $x \in X$ implies $\{\{x\}\} \in S(\{x\})$;
- (SN5) $B \in \mathscr{B}^X$ and $\mathscr{S}_1 \cup \mathscr{S}_2 \in S(B)$ imply $\mathscr{S}_1 \in S(B)$ or $\mathscr{S}_2 \in S(B)$;
- (SN6) $B \in \mathscr{B}^X$ and $\{cl_S(F) \mid F \in \mathscr{H}\} \in S(B)$ for some $\mathscr{S} \subseteq \mathbf{P}(\mathbf{P}X)$ imply $\mathscr{S} \in S(B)$, where $cl_S(F) := \{x \in X \mid \{\{x\}, F\} \in S(\{x\})\}.$

Elements of N(B) are called **B-near collections**. Given a pair of supernear spaces (\mathscr{B}^X, S) , (\mathscr{B}^Y, T) , a bounded map $f: \mathscr{B}^X \to \mathscr{B}^Y$ is called a **supernear map** or shortly **sn-map**, iff

$$\text{(sn) } B \in \mathscr{B}^X \text{ and } \mathscr{S} \in S(B) \text{ imply } \{f[F] \mid f \in \mathscr{S} \} \in T(f[B]).$$

A map will also be referred to as a **supernear** map by saying it preserves B-near collections in the above sense. We denote by SN the corresponding category.

- **2.2 Examples.** Consider a B-set \mathscr{B}^X on X.
 - (i) For a nearness structure ζ on X we obtain a supernear operator on \mathscr{B}^X by setting

$$S_{\zeta}(B) := \begin{cases} \{\emptyset\} & \text{if } B = \emptyset \\ \{\mathscr{S} \subseteq \mathbf{P}X \mid \mathscr{S} \cup \{B\} \in \zeta\} \end{cases} \text{ otherwise}$$

(ii) For a Kuratowski closure operator cl on X, we obtain a supernear operator on \mathscr{B}^X by setting

$$S_{cl}(B) := \{ \mathscr{S} \subseteq \mathbf{P}X \mid B \in sec \{ cl(F) \mid F \in \mathscr{S} \} \}$$

where in general the operator sec on P(PX) is defined by

$$sec \mathcal{M} := \{ T \subset X \mid \forall M \in \mathcal{M}, T \cap M \neq \emptyset \}$$

(iii) For a Leader-proximity [11] δ on X we obtain a supernear operator on \mathscr{B}^X by setting

$$S_{\delta}(B) := \{ \mathscr{S} \subset \mathbf{P}X \mid \mathscr{S} \subset \delta(B) \}$$

where $\delta(B) := \{ F \subseteq X \mid B\delta F \}.$

(iv) For a quasi-uniformity $\mathscr U$ on X we obtain a supernear operator on $\mathscr B^X$ by setting

$$S_{\mathscr{U}}(B) := \Big\{ \mathscr{S} \subseteq \mathbf{P}X \mid \forall U \in \mathscr{U}. \ \bigcap \left\{ \left. U(F) \right| F \in \mathscr{S} \cup \left\{ B \right\} \right\} \neq \emptyset \Big\}$$

where $U(F) := \{ y \in X \mid \exists x \in F. (x, y) \in U \}.$

(v) For a supertopology θ on X (see [4]) we obtain a supernear operator on \mathscr{B}^X by setting

$$S_{\theta}(B) := \{ \mathscr{S} \subseteq \mathbf{P}X \mid \mathscr{S} \subseteq \sec \theta(B) \}$$

where $\theta(B)$ denotes the neighborhood system of B with respect to θ .

- (vi) We first introduce the category CEXT, whose objects are triples $E := (e, \mathcal{B}^X, Y)$ called **compactly determined extensions** where $X = (X, cl_X), Y = (Y, cl_Y)$ are topological spaces (given by closure operators), \mathcal{B}^X is a B-set on X and $e : X \to Y$ is a function satisfying the following conditions:
 - (CE1) $A \in \mathbf{P}X$ implies $cl_X(A) = e^{-1}[cl_Y(e[A])];$
 - (CE2) $cl_Y(e[X]) = Y$, which means that the image of X under e is **dense** in Y.
 - (CE3) $x \in X$ and $y \in cl_Y(\{e(x)\})$ imply $e(x) \in cl_Y(\{y\})$, which means that Y is **symmetric** relative to e[X].
 - (CE4) $\{ cl_Y(e[A]) \mid A \subseteq X \}$ is a **base** for the closed subsets of Y, which means that the extension E is **strict** in the sense of Banaschewski [1].
 - (CE5) For any $y \in Y$ there exists a set $A \subseteq X$ such that $y \in cl_Y(e[A])$, and $cl_Y(e[A])$ is compact, which means that the extension is compactly generated.

Morphisms in CEXT have the form $(f,g):(e,\mathcal{B}^X,Y)\to(e',\mathcal{B}^{X'},Y')$, where $f:X\to X',g:Y\to Y'$ are **continuous** maps such that f is also **bounded**, and the following diagram commutes:

$$X \xrightarrow{e} Y$$

$$f \downarrow \qquad \qquad \downarrow g$$

$$X' \xrightarrow{e'} Y'$$

If $(f,g):(e,\mathscr{B}^X,Y) \to (e',\mathscr{B}^{X'},Y')$ and $(f',g'):(e',\mathscr{B}^{X'},Y') \to (e'',\mathscr{B}^{X''},Y'')$ are $\textbf{\textit{CEXT}}$ -morphisms, then they can be **composed** according to the rule $(f',g') \circ (f,g) := (f' \circ f, g' \circ g) : (e,\mathscr{B}^X,Y) \to (e'',\mathscr{B}^{X''},Y'')$, where "o" denotes the **composition** of maps.

Given a compactly determined extension $E=(e,\mathscr{B}^X,Y)$, we now obtain a supernear operator on \mathscr{B}^X by setting

$$S^{E}(B) := \{ \mathscr{S} \subseteq \mathbf{P}X \mid \forall F \in \mathscr{S} \exists y \in cl_{Y}(e[B]). \ y \in cl_{Y}(e[F]) \}$$

- **2.3 Remark.** We pointed out that in correspondence to the above-mentioned examples the category SN of supernear spaces contains the following categories as full subcategories:
 - the category **TOP** of topological spaces and continuous maps;
 - the category $PROX_{Le}$ of Leader proximity spaces and δ -maps, hence also $PROX_{Lo}$, the category whose objects are Lodato proximity spaces;
 - the category **NEAR** of nearness spaces and nearness-preserving maps;

- the category **CONT** of contiguity spaces and c-maps;
- the category UNIF of uniform spaces and uniformly continuous maps; and at last
- the category **STOP** of supertopological spaces and bounded continuous maps.
- **2.4 Lemma.** For a compactly determined extension $E = (e, \mathcal{B}^X, Y)$ the supernear operator S^E of Example 2.2(vi) has the following additional properties:
 - (S) S^E is symmetric, which means

$$B\in \mathscr{B}^X \quad \text{and} \quad \mathscr{S}\in S^E(B) \quad \text{imply} \quad \{B\}\cup \mathscr{S}\in \bigcap \left\{\,S^E(F)\mid F\in \left(\mathscr{S}\cap \mathscr{B}^X\right)\cup \{B\}\,\right\}$$

(A) S^E is additive, which means

$$B_1 \cup B_2 \in \mathscr{B}^X$$
 implies $S^E(B_1 \cup B_2) \subseteq S^E(B_1) \cup S^E(B_2)$

(CI) S^E is closure-isotone, which means

$$cl_{S^E}(B) \in \mathscr{B}^X$$
 implies $S^E(cl_{S^E}(B)) \subseteq S^E(B)$

(E) S^E is **endogenous**, which means

$$B \in \mathscr{B}^X$$
 implies $\bigcup \{ \mathscr{S} \subseteq \mathbf{P}X \mid \mathscr{S} \in S^E(B) \} \in S^E(B)$

Moreover, the closure operator cl_{S^E} coincides with the topological closure operator cl_X .

Proof: First we note that for each supernearness S on \mathscr{B}^X the corresponding hull operator cl_S is always topological, in particular this applies to S^E . Then it is straightforward to verify the listed properties. In order to prove the equality of the closure operators, consider $A \in PX$ and $x \in cl_X(A)$. Then, by (CE1), $e(x) \in cl_Y(e[A]) \cap cl_Y(\{e(x)\})$, hence $\{\{x\},A\} \in S^E(\{x\})$. Thus $x \in cl_{S^E}(A)$.

Conversely, consider $x \in cl_{S^E}(A)$. Then $\{\{x\},A\} \in S^E(\{x\})$, which implies $y \in cl_Y(e[A])$ for some

Conversely, consider $x \in cl_{S^E}(A)$. Then $\{\{x\}, A\} \in S^E(\{x\})$, which implies $y \in cl_Y(e[A])$ for some $y \in cl_Y(\{e(x)\})$. As a consequence of (CE3) we get $e(x) \in cl_Y(cl_Y(e[A])) = cl_Y(e[A])$, hence in view of (CE1) we obtain $x \in e^{-1}[cl_Y(e[A])] = cl_X(A)$, which was to be shown.

3 Functorial relationships between CEXT and SN

Now, we are going to construct a functor from the category CEXT to the category SN.

- **3.1 Theorem.** We obtain a functor $F: CEXT \rightarrow SN$ by setting
 - (a) $F(E) := (\mathscr{B}^X, S^E)$; for a compactly determined extension $E := (e, \mathscr{B}^X, Y)$
 - (b) F(f,g) := f for a CEXT-morphism $(f,g) : E := (e, \mathscr{B}^X, Y) \rightarrow E' := (e', \mathscr{B}^{X'}, Y')$

Proof: In view of Lemma 2.4 we already know that F(E) is an object of SN with the corresponding additional properties.

Now let $E:=(e,\mathscr{B}^X,Y):(f,g)\to E':=(e',\mathscr{B}^{X'},Y')$ be a $\textbf{\textit{CEXT}}$ -morphism. It has to be shown that f preserves the near-collections from $F(E):=(\mathscr{B}^X,S^E)$ to $F(E'):=(\mathscr{B}^{X'},S^{E'})$. Without loss of generality, let $B\in\mathscr{B}^X\setminus\{\emptyset\}$ and $\mathscr{S}\in S^E(B)$. Now consider $F\in\mathscr{S}$. By definition, there exists $y\in cl_Y(e[B])$ such that $y\in cl_Y(e[F])$. The hypothesis implies $g(y)\in g[cl_Y(e[B])]$ and therefore $g(y)\in cl_{Y'}(g[e[B]])=cl_{Y'}(e'[f[B]])$, since (f,g) is a $\textbf{\textit{CEXT}}$ -morphism. Because $y\in cl_Y(e[F])$, we have $g(y)\in cl_{Y'}(e'[f[F]])$, which results in $\{f[F]\mid F\in\mathscr{S}\}\in S^{E'}(f[B])$.

To obtain a related functor in the opposite direction, we introduce the notion of so-called B-clips for each bounded set $B \in \mathcal{B}^X \setminus \{\emptyset\}$. This is motivated by the following facts.

Given a (compactly determined) extension $E=(e,\mathcal{B}^X,Y)$, it is possible to define a function $t:Y\to P(PX)$ by setting

$$t(y) := \{ T \subseteq X \mid y \in cl_Y(e[T]) \}$$

Moreover, for each $B \in \mathcal{B}^X \setminus \{\emptyset\}$ we put

$$\mathscr{C}^B := \bigcup \{\, t(y) \mid y \in \operatorname{cl}_Y(e[B]) \,\}$$

Now every B-near collection $\mathscr{S} \in S^E(B)$ satisfies $\mathscr{S} \subseteq \mathscr{C}^B$; in fact $F \in \mathscr{S}$ implies the existence of some $y \in cl_Y(e[B])$ such that $y \in cl_Y(e[F])$, hence $F \in t(y)$ and consequently $F \in \mathscr{C}^B$.

This leads to the following definition.

- **3.2 Definition.** Let (\mathscr{B}^X, S) be a supernear space. For $B \in \mathscr{B}^X \setminus \{\emptyset\}$ a subset $\mathscr{C} \subseteq PX$ is called a B-clip in S, provided that
- (C1) $\emptyset \notin \mathscr{C}$;
- (C2) $C_1 \in \mathscr{C}$ and $C_1 \subseteq C_2 \in PX$ imply $C_2 \in \mathscr{C}$;
- (C3) $C_1 \cup C_2 \in \mathscr{C}$ implies $C_1 \in \mathscr{C}$ or $C_2 \in \mathscr{C}$;
- (C4) $B \in \mathscr{C}$;
- (C5) $cl_S(C) \in \mathscr{C}$ implies $C \in \mathscr{C}$;
- (C6) $\mathscr{C} \in S(B)$;
- (C7) $\bigcap \{ cl_S(T) | T \in \mathscr{C} \} = \emptyset$ implies the existence of a finite subset $\mathscr{C}_0 \subseteq \mathscr{C}$ with $\bigcap \{ cl_S(T) | T \in \mathscr{C}_0 \} = \emptyset$

Another interesting example for this notion is given by the set system

$$e_X(x) := \{ T \subseteq X \mid x \in cl_S(T) \}$$

for $x \in X$, which is a $\{x\}$ -clip in S. Moreover, $e_X(x)$ is a maximal element in $S(\{x\})$ ordered by setinclusion. This can be shown as follows. Let $\mathscr C$ be an element of $S(\{x\})$ and assume $e_X(x) \subseteq \mathscr C$. By hypothesis we have $\{x\} \in \mathscr C$. Now, $C \in \mathscr C$ implies $\{\{x\}, C\} \in S(\{x\})$, because of $\{\{x\}, C\} \ll \mathscr C$. Hence we get $x \in cl_S(C)$ which means $C \in e_X(x)$.

With respect to the above-mentioned motivation and Remarks, we naturally arrive at the following definition.

- **3.3 Definition.** A supernear space (\mathscr{B}^X, S) , as well as S, is called **clip-determined**, provided that
- (CL) $B \in \mathscr{B}^X \setminus \{\emptyset\}$ and $\mathscr{S} \in S(B)$ imply the existence of a B-clip \mathscr{C} with $\mathscr{S} \subseteq \mathscr{C}$.
- **3.4 Remark.** In addition to the properties of Lemma 2.4, the supernearness S^E as defined in Example 2.2(vi) is also clip-determined.

We now prepare the introduction of a functor $G: SN \rightarrow CEXT$ in the opposite direction to F.

3.5 Lemma. Let (\mathscr{B}^X, S) be a supernear space. We put

$$\hat{X} := \{ \mathscr{C} \subseteq \mathbf{P}X \mid \exists B \in \mathscr{B}^X \setminus \{\emptyset\}. \mathscr{C} \text{ is a } B\text{-clip} \}$$

and for each $\hat{A} \subseteq \hat{X}$ we set

$$cl_{\hat{X}}(\hat{A}) := \{ \mathscr{C} \in \hat{X} \mid \bigcap \hat{A} \subseteq \mathscr{C} \}$$

where $\bigcap \hat{A} := \{ F \subseteq X \mid \forall \mathscr{C} \in \hat{A}. \ F \in \mathscr{C} \}$ (so that, by convention, $\bigcap \hat{A} = PX$ if $\hat{A} = \emptyset$). Then $cl_{\hat{X}}$ is a topological closure operator on \hat{X} .

Proof: Straightforward.

3.6 Theorem. For supernear spaces (\mathscr{B}^X, S) and (\mathscr{B}^Y, T) let $f: X \to Y$ be an sn-map. Define a function $\hat{f}: \hat{X} \to \hat{Y}$ by setting for each $\mathscr{C} \in \hat{X}$

$$\hat{f}(\mathscr{C}) := \{ D \subseteq Y \mid f^{-1}[cl_T(D)] \in \mathscr{C} \}$$

Then the following statements are valid.

- (1) \hat{f} is a continuous map from $(\hat{X}, cl_{\hat{X}})$ to $(\hat{Y}, cl_{\hat{Y}})$.
- (2) The composites $\hat{f} \circ e_X$ and $e_Y \circ \hat{f}$ coincide, where $e_X : X \to \hat{X}$ is the function that assigns the $\{x\}$ -clip $e_X(x)$ to x.
- (3) $\{f[C] \mid C \in \mathscr{C}\} \subseteq \hat{f}(\mathscr{C}).$
- $(4) \cap e_X[B] := \bigcap \{ e_X(x) \mid x \in B \} = \{ F \subseteq X \mid B \in cl_S(F) \} \text{ for every } B \subseteq X.$

Proof: We prove statement (2), all other verifications are left to the reader. Let x be an element of X. We have to show the validity of $\hat{f}(e_X(x)) = e_Y(f(x))$. To this end, let $F \in e_Y(f(x))$. Then $f(x) \in cl_T(F)$, hence $x \in f^{-1}[cl_T(F)]$, and consequently $f^{-1}[cl_T(F)] \in e_X(x)$. Thus $F \in \hat{f}(e_X(x))$, which proves the inclusion $e_Y(f(x)) \subseteq \hat{f}(e_X(x))$. Since $e_Y(f(x))$ is maximal with respect to set-inclusion on $T(\{f(x)\}) \setminus \{\emptyset\}$ and since $\{cl_T(D) \mid D \in \hat{f}(e_X(x))\}$ corefines $\{f[V] \mid V \in e_X(x)\}$, the hypothesis that f is an sn-map implies the desired equality.

3.7 Remark. With respect to Lemma 2.4 and Remark 3.4 we summarize that the supernear operator S^E satisfies the axioms of being symmetric, additive, closure-isotone, endogenous and clip-determined.

These facts motivate the following notion.

- **3.8 Definition.** A supernear operator on \mathscr{B}^X , and also the corresponding space, is called **contigual**, if the above-mentioned axioms for the operator are satisfied. Moreover, we denote the corresponding full subcategory of SN by CSN.
- **3.9 Theorem.** We obtain a functor $G: CSN \rightarrow CEXT$ by setting
 - (a) $G(\mathcal{B}^X, S) := (e_X, \mathcal{B}^X, \hat{X})$ for any contigual supernear space (\mathcal{B}^X, S) with $X := (X, cl_S)$ and $\hat{X} := (\hat{X}, cl_{\hat{X}});$
 - (b) $G(f) := (f, \hat{f})$ for any sn-map $f : (\mathscr{B}^X, S) \to (\mathscr{B}^Y, T)$.

Proof: In view of (SN6) it is straightforward to verify that cl_S is a topological closure operator on X. By Lemma 3.5, we also have the topological closure operator $cl_{\hat{X}}$ on \hat{X} . Therefore we obtain topological spaces with the \mathbf{B} -set \mathscr{B}^X , and $e_X: X \to \hat{X}$ is a continuous map according to Theorem 3.6.

To establish (CE1), let A be a subset of X and suppose $x \in cl_S(A)$. Then, by Theorem 3.6(4) the inclusion $\bigcap e_X[A] \subseteq e_X(x)$ follows. This means that $e_X(x) \in cl_{\hat{X}}(e_X[A])$, hence $x \in e_X^{-1}[cl_{\hat{X}}(e[A])]$. Conversely, let x be an element of $\in e_X^{-1}[cl_{\hat{X}}(e[A])]$. Then by definition we have $e_X(x) \in cl_{\hat{X}}(e_X[A])$, and consequently $\bigcap e_X[A] \subseteq e_X(x)$. By Theorem 3.6(4) we obtain $A \in e_X(x)$, which means $x \in cl_S(A)$.

To establish (CE2), let $\mathscr{C} \in \hat{X}$ and suppose $\mathscr{C} \notin cl_{\hat{X}}(e_X[X])$. By definition we get $\bigcap e_X[X] \nsubseteq \mathscr{C}$, so that there exists a set $F \in \bigcap e_X[X]$ with $F \notin \mathscr{C}$. By Theorem 3.6(4) the inclusion $X \subseteq cl_X(F)$ holds. Since $B \in \mathscr{C}$ for some $B \in \mathscr{B}^X$ (see also (C2)) and in view of axiom (C4), we get $cl_S(F) \in \mathscr{C}$, hence $F \in \mathscr{C}$, because of axiom (C5). But this is a contradiction, which shows $\mathscr{C} \in cl_{\hat{X}}(e_X[X])$.

To establish (CE3), let x be an element of X such that $\mathscr{C} \in cl_{\hat{X}}(\{e(x)\})$. We must show $e_X(x) \in cl_{\hat{X}}(\{\mathscr{C}\})$. By hypothesis we have $e_X(x) \subseteq \mathscr{C}$ and moreover $\mathscr{C} \in S(B)$ for some $B \in \mathscr{B}^X \setminus \{\emptyset\}$. Since $\{x\} \in \mathscr{C}$ and since \mathscr{C} is symmetric, we get $\{B\} \cup \mathscr{C} \in S(\{x\})$ with $\mathscr{C} \ll \{B\} \cup \mathscr{C}$. According to (SN1) we then get $\mathscr{C} \in S(\{x\})$, and since $e_X(x)$ is maximal with respect to $(S(\{x\}) \setminus \{\emptyset\}, \subseteq)$, \mathscr{C} coincides with $e_X(x)$.

By hypothesis $f:(\mathscr{B}^X,S)\to(\mathscr{B}^Y,T)$ is an sn-map, in particular f is continuous and bounded. It remains to show that the following diagram commutes

$$\begin{array}{ccc}
X & \xrightarrow{e_X} \hat{X} \\
\downarrow f & & \downarrow \hat{f} \\
Y & \xrightarrow{e_Y} \hat{Y}
\end{array}$$

To this end let x be an element of X. We must show $(\hat{f} \circ e_X)(x) = (e_Y \circ f)(x)$.

" \subseteq ": $D \in (\hat{f} \circ e_X)(x) = \hat{f}(e_X(x))$ means $f^{-1}[cl_T(D)] \in e_X(x)$, hence $x \in cl_S(f^{-1}[cl_T(D)])$. In particular we have $f(x) \in cl_T(f[f^{-1}[cl_T(D)]])$, since f is continuous. But now $cl_T(cl_T(D)) \subseteq cl_T(D)$ implies $D \in e_Y(f(x))$.

"\(\to \)": $D \in e_Y(f(x))$ implies $f(x) \in cl_T(D)$, hence $x \in f^{-1}[cl_T(D)]$ and consequently $x \in f^{-1}[cl_T(D)]$). This implies $f^{-1}[cl_T(D)] \in e_X(x)$, which means $C \in \hat{f}(e_X(x))$. Finally, this establishes that the composition of sn-maps ist preserved by G.

Axiom (CE4) can be verified in an indirect manner, and (CE5) should be proven according to (C7) in the definition of a B-clip in S.

3.10 Theorem. Let $F: CEXT \to SN$ and $G: CSN \to CEXT$ be the functors given in Theorems 3.1 and 3.9. For each object (\mathscr{B}^X, S) of CSN let $t(\mathscr{B}^X, S)$ denote the identity map $t(\mathscr{B}^X, S) := id_X: F(G(\mathscr{B}^X, S)) \to (\mathscr{B}^X, S)$. Then $t: F \circ G \to 1_{CSN}$ is a natural equivalence from $F \circ G$ to the identity functor 1_{CSN} , i.e., $id_X: F(G(\mathscr{B}^X, S)) \to (\mathscr{B}^X, S)$ is an isomorphism for each CSN-object (\mathscr{B}^X, S) and the following diagram commutes for each sn-map $f: (\mathscr{B}^X, S) \to (\mathscr{B}^Y, T)$

$$F(G(\mathscr{B}^X,S)) \xrightarrow{id_X} (\mathscr{B}^X,S)$$

$$F(G(f)) \downarrow \qquad \qquad \downarrow f$$

$$F(G(\mathscr{B}^Y,T)) \xrightarrow{id_Y} (\mathscr{B}^Y,T)$$

Proof: The commutativity of the diagram is obvious, since F(G(f)) = f. It remains to prove that $id_X : F(G(\mathcal{B}^X, S)) \to (\mathcal{B}^X, S)$ is an sn-map for each object (\mathcal{B}^X, S) of CSN and vice versa. To fix the notation, let S' be such that $F(G(\mathcal{B}^X, S)) = F(e_X, \mathcal{B}^X, \hat{X}) = (\mathcal{B}^X, S')$. It suffices to show that for

each $B \in \mathscr{B}^X \setminus \{\emptyset\}$ we have $S'(B) \subseteq S(B)$. To this end assume $\mathscr{S}' \in S'(B)$. In view of Lemma 2.4(iv) it suffices to establish $\mathscr{S}' \subseteq \bigcup \{\mathscr{S} \subseteq PX \mid \mathscr{S} \in S(B)\}$. But $F \in \mathscr{S}'$ implies the existence of an element $\mathscr{C} \in cl_{\hat{\mathbf{X}}}(e[B])$ such that $\mathscr{C} \in cl_{\hat{\mathbf{X}}}(e_X([F]))$, hence $\bigcap e_X[B] \subseteq \mathscr{C}$.

In view of Theorem 3.6(4) we get $B \in \mathscr{C}$ and $\mathscr{C} \in S(B')$ for some $B' \in \mathscr{B}^X \setminus \{\emptyset\}$ (note in particular that \mathscr{C} is a B'-clip for some bounded set B'). Since S is symmetric, we get $\{B'\} \cup \mathscr{C} \in S(B)$ and $\mathscr{C} \ll \{B'\} \cup \mathscr{C}$, hence $\mathscr{C} \in S(B)$ according to (SN1). On the other hand, we also know that the statement $\mathscr{C} \in cl_{\widetilde{X}}(e_X[F])$ holds, which implies $F \in \mathscr{C}$ according to Theorem 3.6(4) and the definition of the hull operator $cl_{\widetilde{X}}$, respectively.

In the opposite direction consider $\mathscr{S} \in S(B)$. Since S in particular is clip-determined, we can choose a B-clip \mathscr{C} such that $\mathscr{S} \subseteq \mathscr{C}$. In order to show $\mathscr{S} \in S'(B)$ we need to verify that for $F \in \mathscr{S}$ we should have

- (1) $\mathscr{C} \in cl_{\hat{X}}(e_X[B])$, and
- (2) $\mathscr{C} \in cl_{\hat{X}}(e_X[F]).$

So let F be an element of \mathscr{S} .

- (1) By definition of $cl_{\hat{X}}$ it suffices to establish $\bigcap e_X[B] \subseteq \mathscr{C}$. So let D be an element of $\bigcap e_X[B]$, which means $B \subseteq cl_S(D)$. Since $B \in \mathscr{C}$ according to (C4), we get $cl_S(D) \in \mathscr{C}$, hence $D \in \mathscr{C}$ by (C5).
- (2) $D \in \bigcap e_X[F]$ implies $F \subseteq cl_S(D)$. Since $F \in \mathscr{C}$ by hypothesis, we get $cl_S(D) \in \mathscr{C}$, and analogously we infer $D \in \mathscr{C}$, which concludes the proof.

Now we are able to formulate the main theorem of this paper, which is a consequence of the preceding Lemmata and Theorems, respectively.

- **3.11 Theorem.** Let (\mathscr{B}^X, S) be a supernear space. Then the following are equivalent:
 - (i) (\mathscr{B}^X, S) is continual;
 - (ii) there exists a compact extension (e, \mathcal{B}^X, Y) such that for each $B \in \mathcal{B}^X \setminus \{\emptyset\}$ the elements $\mathcal{S} \in S(B)$ are characterized by

$$cl_Y(e[B]) \in sec\{ cl_Y(e[F]) \mid F \in \mathscr{S} \}$$

- (iii) there exists a topological space (Y, cl_Y) and a continuous map $f: X \to Y$ that satisfies
 - $cl_S(A) = f^{-1}[cl_Y(f[A])]$ for each $A \subseteq X$;
 - f[X] is dense in Y;
 - Y is symmetric relative to f[X];
 - $\{ cl_Y(e[A]) \mid A \subseteq X \}$ forms a base for the closed subsets of Y;
 - $\forall y \in Y \exists A \subseteq X. y \in cl_Y(e[A])$ and $cl_Y(e[A])$ is compact;
 - for each $\mathscr{S} \in \mathscr{B}^X \setminus \{\emptyset\}$ the elements $\mathscr{S} \in S(B)$ are characterized by the fact that for each $F \in \mathscr{S}$ there exists $y \in cl_Y(e[B])$ such that $y \in cl_Y(e[F])$.

References

- [1] Banaschewski, B. Extensions of topological spaces. Canadian Mathematical Bulletin 7 (1964), 1–23
- [2] Bentley, H.L. Nearness spaces and extension of topological spaces. Studies in Topology, Academic Press, NY (1975), 47–66.

- [3] Császár, Á. Foundations of General Topology. Pergamon Press (1963), Oxford London New York Paris.
- [4] DOÍTCHINOV, D. A unified theory of topological, proximal and uniform spaces. Doklady Akad. Nauk SSSR 156 (1964), 21–24 (Russian); English transl.: Soviet Mathematics Doklady 4 (1964), 595–598 (English).
- [5] DOÍTCHINOV, D Compactly determined extensions of topological spaces. SERDICA Bulgarice Mathematical Publications 11 (1985), 269–286.
- [6] GÄHLER, W. Extension structures and completions in topology and algebra. Seminarberichte aus dem Fachbereich Mathematik der Fernuniversität Hagen, Bd. 70 (2001), 77–103
- [7] HAYASHI, E. On some properties of proximity. J. Math. Soc. Japan 16 (1964), 375–378; MR 31#2708.
- [8] HERRLICH, H. A concept of nearness. Gen. Top. Appl. 5 (1974), 191–212.
- [9] Hušek, M. Categorical connections between generalized proximity spaces and compactifications. Contributions to Extension Theory of Topological Structures (Proc. Symp. Berlin 1967), Berlin (1969), 127–132.
- [10] IVANOVA, V.M., IVANOV, A. Contiguity spaces and bicompact extensions. Dokl. Akad. Nauk SSSR 127 (1959), 20–22.
- [11] Leader, S. Local proximity spaces. Math. Ann. 169 (1967), 275–281.
- [12] Leseberg, D. Supernearness, a common concept of supertopologies and nearness. Top. Appl. 123 (2002), 145–156.
- [13] Leseberg, D. Ordered continuity structures and their relationship to topology. Demonstratio Math. vol XXXV, no 1 (2002), 175–197.
- [14] Leseberg, D. Symmetrical extensions and generalized nearness. To appear.
- [15] Leseberg, D. A new concept of nearness. Contributions to General Algebra, 13 (Velké Karlovice, 1999/Dresden, 2000), 207–217.
- [16] LODATO, M.W. On topological induced generalized proximity relations I. Proc. Amer. Math. Soc. 15 (1964), no. 3, 417–422.
- [17] LODATO, M.W. On topological induced generalized proximity relations II. Pacific Journal of Mathematics 17 (1966), no. 1, 131–135.
- [18] NAIMPALLY, S.A., WARRACK, B.D. Proximity spaces. Cambridge (1970).
- [19] SMIRNOV, Y.M. On the completeness of proximity spaces. Dokl. Akad. Nauk SSSR 88 (1953), 761–794 (in Russian); MR 15#144.
- [20] TAÍMANOV, A.D. On extensions of continuous mappings of topological spaces. Mat. Sbornik N. S. 31 (1952), 459–463.
- [21] TERWILLINGER, W.L. On contiguity spaces. Thesis, Washington State University (1965).
- [22] TOZZI, A., WYLER, O. On categories of supertopological spaces. Acta Universitatis Carolinae Mathematica et Physica 28(2) (1987), 137–149.

Dieter Leseberg

Department of Mathematics and Informatics

Free University of Berlin