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Abstract: It is shown that productivity numbers of coreflective subcategories of
topological linear spaces are precisely submeasurable cardinals (unlike locally con-
vex spaces, where such numbers are measurable). A similar result is expected in
topological spaces (only partial results are given here).
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1 Introduction

In my contribution to a similar (but 5 years younger) Festschrift ([7]), a survey
of known results about productivity numbers of coreflective subcategories of
various categories was given. One of the results asserts that those numbers
in the category of topological linear spaces (shortly TLS) are submeasurable
cardinals. Although that result is said to have been published in [6], only a
special case was proved there, namely the case for the first sequential cardinal.
The original idea of the author was that the published special proof can be
almost automatically transferred to higher cardinals. But it is not the case and
we shall provide a full general proof here.

A similar situation in the category of topological spaces (shortly Top) has
not yet been completely solved. Nevertheless, a progress was done and we shall
describe the nowadays situation.

We shall now briefly recall some concepts and terminology.

Every subcategory will be full and so it suffices to speak about subclasses
of objects instead of subcategories. In the category TLS of topological linear
spaces over R and continuous linear maps. we shall always assume that our
coreflective classes C contain R or, equivalently, that C are bicoreflective. Bi-
coreflectivity means that the coreflective maps are linear isomorphisms, i.e., that
for every space X € TLS there exists a finer space cX belonging to C such that
every continuous linear mapping from a space in C to X is continuous already
into the finer space ¢X. Equivalently, C are closed under inductive generation,
i.e., under quotients, direct sums (all in TLS) and contain the finest topological
linear spaces. Every class of spaces from TLS has a coreflective hull in TLS.
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Since finite products coincide with finite direct sums, every coreflective
class is finitely productive (in TLS). We say that a subclass C of a category K
is k-productive if every product (in K) of less than x members of C belongs to
C; finite (or countable) productivity is another expression for w- (or w;- , resp.)
productivity. Productivity number of a subclass C of K is the smallest cardinal
(if it exists) such that a product in K of k-many objects from C does not belong
to C, otherwise it is a symbol co that we consider to be bigger than any cardinal
in this case. Productivity number of C will be denoted by p¢ or just p (thus, C
is pc-productive). Very often (and it is our case of coreflective classes in TLS or
Top) one may take powers of a single space instead of products of spaces in the
definition of productivity numbers (take the sum of the coordinate spaces and
realize that the original product is a retract of the power of the sum). In the case
of TLS, productivity numbers p have one more property, namely no product of at
least p many spaces from C having nontrivial separated modifications belongs to
C; that follows from an important result of P. and S.Dierolf [2] that a coreflective
class C is k-productive in TLS iff R* € C for all A < .

In [6] we have proved that productivity numbers of coreflective subclasses
of LCS are measurable cardinals and that the productivity number of a countably
productive coreflective class in TLS is sequential or oo if sequential cardinals do
not exist.

Let us recall that sequential cardinal is a cardinal k such that there exists
a sequentially continuous noncontinuous real-valued map on the Cantor space
2%. Those cardinals were dealt with in the classical Mazur’s paper [8] and
in [10]. Mazur showed that the first sequential cardinal is weakly inaccessible
and that every sequentially continuous map on a product of less than xk-many
metrizable separable spaces into a metrizable space is continuous (even a little
more general spaces can be used). Noble [10] generalized the class of metrizable
separable spaces used in the last mentioned result to a bigger class including
first countable spaces.

The first sequential cardinal has its continuation in a hierarchy of similar
cardinals. To define it, we must start with some basic concepts.

A submeasure p on an algebra B of sets is a real-valued mapping defined on B
and having the following properties:

u(®) =0,

w(A) < u(B) for AC B,A,B € B,

u(AUB) < u(A) + p(B) for A,B € B.

In the last property we may assume that A, B are disjoint.

A submeasure £ on & is said to be A-subadditive if p(U, Aa) < >, 1(4a),
whenever 7 < X and {A,} is a (disjoint) family in B.

A mapping f between topological spaces is said to be 7-continuous, for
a cardinal 7 > w, if it preserves limits of nets of lengths less than 7; f is
monotonically T-continuous if it preserves limits of well-ordered nets of lengths
less than 7 (by length of a net we mean cardinality of the index set of the
net, i.e., of the domain of the net). In our case we shall use the above kind
of continuity in algebras of subsets of a set. If not said otherwise, we shall
always have in mind the order—convergence, i.e., a net {A4;} converges to A
if limsup{A;} = liminf{A4;} = A. Using this convergence, it is not difficult to
show that a submeasure is (monotonically) 7-continuous on a 7-complete algebra



if it is (monotonically) 7-continuous at 0. For instance, it is monotonically 7-
continuous iff p(A,) = 0 for {4y }a<a \¢ 0, where A < 7.

A submeasure p on B is said to be 7-additive on null setsif pu(|J, Aa) =0
provided A < 7 and p(A,) = 0 for every @ < A (one may assume that {A,}is a
disjoint system). We should realize that every monotonically 7-continuous sub-
measure is 7-subadditive and thus is 7-additive on null sets. But 7-subadditivity
does not imply monotonical 7-continuity. If we add sequential continuity to 7-
subadditivity, we already get the 7-continuity: For 7 > w, a submeasure on a
T-complete B is monotonically T-continuous iff it is sequentially continuous and
T-additive on null sets.

Definition 1 An infinite cardinal & is said to be submeasurable if there exists
a nonzero k-continuous submeasure on the algebra of all subsets of k vanishing
at singletons.

The first submeasurable cardinal equals to w and the second one coincides
with the first sequential cardinal (if it exists — see [6]).

In case of 7 = w;, the 7-continuity and monotonical 7-continuity coin-
cide (with sequential continuity). It is not the case for higher cardinals 7 in
general topological spaces. But for submeasures both types of continuity coin-
cide, so we could use monotone k-continuity in the previous definition. Other
characterizations of submeasurable cardinals from [6], [4] and [1]: a cardinal & is
submeasurable iff there is a noncontinuous map g : 25 — R (or g : N* — R) that
is k-continuous, or iff there is a noncontinuous homomorphism g : Z§ — G (or
g : Z% — G) into a topological group G that is k-continuous (instead of homo-
morphisms into G we can use group—pseudonorms into R, and again monotone
k-continuity instead of k-continuity). Later, we shall show modified characteri-
zations in TLS.

2 Topological linear spaces

We shall now prove that submeasurable cardinals coincide with productivity
numbers of coreflective non-productive classes in TLS.

Theorem 2 Productivity numbers of coreflective subcategories in TLS are sub-
measurable cardinals or co.

Proof: Let C be a coreflective class in TLS and k be its productivity number.
We may suppose that w < k¥ < oco. We know that there is a non-continuous
linear map f : R® — E, where F is a Fréchet space, such that f is continuous
on the coreflection cR® of R in C. It was proved by Noble in [10] that a map
f on a product of spaces into a regular space is continuous iff its restrictions
to any canonical image of 2® and to a X-product (in fact, o-product suffices)
are continuous. Thus, in our case, either a restriction to a canonical image
of 2* is not continuous, or the restriction to the o-product Y of x-copies of
R at the point 0 is not continuous. We shall show that the latter case is not
possible. Otherwise there is an € > 0 such that every neighborhood of 0 in YV
contains a point z with |f(z)| > € (by |.| we denote the distance to 0 in E).
Start with a finite set Cy and find a point o € R* having a finite support Cy
such that |f(zo)| > € and |pr;(zq)| < 1 for i € Cy. Next, we can find a point



x1 having a finite support Cy such that |f(z1)| > € and |pr;(z1)| < 1/2 for
i € C;. Continuing in the same way, we get a sequence {z,} of points of ¥’
having supports C,, and such that | f(z,)| > € and |pr;(z,)| < 1/(n+1) for each
1 € C,_1 and each n. Denote by S the union of all C),’s. Thus, S is countable
and R® canonically embeds into R®. The image contains all points z,,. Since the
restriction of f to that canonical image must be continuous (because R belongs
to C) and z,, — 0 we have f(z,) — 0, which contradicts our assumption.

It follows that f is not continuous on some canonical image of 2* into
R". We remind that the canonical image means in our case that there is a point
{ro} € R* and a map ¢ = 1), : 2F = R® with 4(0) = 0,94(1) = ro. Tt
remains to show that the composition f1) is k-continuous. To simplify notation
we shall forget about v and shall assume that 2% is a part of R* — equivalently,
that all 7o # 0. Take some A\ < k and a net {z,}qex in 2% converging to 0.
Suppose that |f(zs)| > € for all @ € X and some € > 0. For every coordinate
B € K, the net {prg(za)}aq is eventually O starting with an index ag. Therefore,
the set x decomposes into A many sets By, = {# € k : ag = a} (some of the
sets B, may be empty).

For y € 2" we may take a special net {y®}q,ecx in 2% converging to y,
namely prg_(y*) = prg_(y) if v < a and prp_(y®) = 0 otherwise. If {f(y)}
does not converge to f(y) for some y, we may assume in our case that z, =
y —y®. In this case we may define a linear continuous map h = IIh, : R* —
MaeaRPe with hq (1) = prp_(y). Then the net {Xx\a}aex converges to 0 in R*
and its h-image is the net {z,}, which contradicts our assumption that f(z,)
does not converge to 0.

So, we may assume that f(y®) converges to f(y) for every y. It follows
that we may substitute the original points z, by z] for some 7 (depending
on «a) and take £/2 instead of e. It follows we may assume that z, is 0 on
U{Bs : 6 >~} for some . On the other hand, for every v € A the restriction of
the net {z4} to J{Bs: § <~} is eventually 0. Consequently, we may choose a
cofinal set S in A such that the supports of z,’s are disjoint for different o € S.
Now it is easy to follow the construction of h from the previous paragraph and
to get a contradiction.

Hence, the mapping f on our 2% is k-continuous and not continuous,
which means that & is a submeasurable cardinal. <

The next result shows that every submeasurable cardinal is attained as
a productivity number of a coreflective class in TLS. Our procedure is a modifi-
cation of the proof of Theorem 3 from [6].

Theorem 3 For every submesurable cardinal k there is a coreflective class C in
TLS having k for its productivity number.

Proof: Take a k-continuous submeasure p on k vanishing at singletons and
having u(k) = 1. Denote by E the linear space R* endowed with the metric

_ [ _lz—y

Then (E,d) is a topological linear space and the identity mapping f : RF — E'is
not continuous since the net {x x } ke[s)<~ of characteristic functions of finite sets
converges to X in R* but d(xk, xx) = 1/2 for every finite set K. We shall now
prove that fg is continuous for every continuous linear map g : R = R®, A < &.



Take a net {z;}s converging to 0 in R*. Because of weight of R* we may
assume that |I| < k. Choose € > 0 and define

A ={B ek |pra(g(z;))| <e/2for j >i}.

Then {A;}r is a cover of kK and A; C A; for i < j. Since p is k-continuous, there
is some 4o € I such that p(k\ A;,) < €/2. Then

, l9(;)| lg(z;)|
Wote,0) < /A,-O 1+ |g(z;)] et /N\A,-O 1+ |g(z;)] duse/2tel?

for j > ig. Consequently, g(x;) converges to 0 in (E,d).
We have proved that the coreflective hull C of {R*},., does not contain
R* and, thus, its productivity number equals to . <

Since the coreflective hull (in TLS) of all powers of reals is productive, we
have the following result.

Corollary 4 The class of productivity numbers of coreflective classes in TLS
coincides with the class consisting of all of submeasurable cardinals and of oc.

As an interesting result we shall prove now the following modification
of characterizations of submeasurable cardinals by group homomorphisms on
Z". By a pseudonorm p on a topological linear space £ we mean the distance
to 0 of points of E for a translation invariant metric on E. Clearly, composi-
tions of pseudonorms with linear maps are pseudonorms and, conversely, every
pseudonorm is a composition of a linear map into a metrizable topological linear
space F' (or a Fréchet space) and the canonical pseudonorm of F.

Proposition 5 The following conditions are equivalent for an infinite cardinal
k: 1. k is submeasurable;

2. there is a moncontinuous linear map on R* into a topological linear
space that is k-continuous;

3. there is a noncontinuous pseudonorm on R® that is k-continuous;

4. there is a noncontinuous real-valued function on R* that is k-continuous.

Proof: Clearly, 2 = 3 = 4. The implication 1 = 2 is shown in the proof of
Theorem 3. It remains to prove 4 = 1. Assuming 4, we shall show that there
is a noncontinuous, k-continuous real-valued function on Z*.

Let f : R* — R be a x-continuous non-continuous function. We want to
find a continuous map h : Z* — R® such that the composition fh : Z* — R
is k-continuous and non-continuous. By a classical result R is a continuous
image of Z¥ (see, e.g., [9]) by a mapping g, and the composition fg* is thus
k-continuous. It remains to show that we can find g in such a way that fg” is
not continuous. Since f is not continuous, there is a net {z;}r in R® converging
to some point x such that f(z;) does not converge to f(x). Clearly, we may
assume that = 0 So, it suffices to find g such that for every net {a;}r in R
converging to 0 there is a net {b;}r in Z* converging to 0 and g¢(b;) = a; for
every i € I.

Take the usual continuous map m; of {—1,0,1}* onto [—1, 1] assigning
to {cn} the point > ¢,/2,}. The subspace P of Z% of all sequences having 2
for their first coordinate is homeomorphic to the space of irrationals and, thus,



there is a continuous map ms of P onto R. The space {—1,0,1}*UP is a closed
subspace of Z* and the mapping m; U my can be extended continuously to a
map g : Z* — R. Now, every net {a;}r converging to 0 in R must be eventually
n [—1,1]. For those points a; belonging to [—1,1] we find b; with mq(b;) = a;
and for the remaining points a; we take arbitrary points b; with g(b;) = a;.
Then b; converges to 0 and we are done. <&

3 Topological spaces

First we repeat some basic facts. The problem whether there is a productive
coreflective nontrivial subcategory of Top was posed in 1978 in [5]. At a con-
ference in Oxford in 1989, Dow and Watson gave some partial solutions of that
problem and they published them in [3]. We shall mention here some of their
results:

1. If GCH holds and there are no inaccessible cardinals, there is no
productive coreflective nontrivial subcategory of Top.

2. If O(A) holds for all regular uncountable cardinals A then there is no
productive coreflective nontrivial subcategory of Top.

3. The existence of a productive coreflective nontrivial subcategory of
Top implies consistency of a weakly compact cardinal.

4. If real-measurable cardinals exist then there is a finitely productive
coreflective nontrivial subcategory of Top containing the topological ordered
space wo + 1.

As far as T know, the original problem is still open in ZFC. To get closer
to a solution, it seemed convenient to consider how much productive are core-
flective classes. This was a start for the results about productivity numbers
in topological categories. Although in the cases of topological linear spaces,
topological groups, uniform spaces, and in their convenient subcategories, pro-
ductivity numers are fully described now, the original case of topological spaces
has not yet been solved. The last mentioned result of Dow and Watson suggests
that there may be connections to measurability in Top, too. We shall modify
the example from [3] to get that every submeasurable cardinal is a productivity
number of some coreflective class in Top. It is not clear at all that the con-
verse holds, too. Maybe, if one restricts to coreflective classes of completely
regular spaces, there is a chance to show that their productivity numbers are
submeasurable cardinals (or 2, or 00).

Theorem 6 Fvery submeasurable cardinal is a productivity number of some
coreflective class in Top.

Proof: Let x be a submeasurable cardinal and p be a corresponding submeasure
on k with p(k) = 1. For a family G = {G, : @ € k} of open sets in a topological
space X and for r» > 0 define

G-={zeX:pf{a:2¢G,} <r}.

Of course, G, = X for r > 1 and so it suffices to take r €]0,1]. Now we can
define our main class

C ={X : G, is open for every G and every r > 0}.



We shall prove that C is reflective in Top that is x-productive and not xT-
productive. It is clear that C contains all discrete spaces and is closed under
disjoint sums.

1. C is closed under quotients. Take a quotient f : X — Y, where
X € C, and a family G = {G, : a € k} of open sets in Y. The family
H = {f"1(Ga) : @ € K} of open sets in X has all the required H, open. It
suffices to show that H,. = f~1(G,), which is easy.

2. C is finitely productive. Take X,Y € C, an open family G = {G,}, in
X x Y and r €]0,1]. Choose (z9,¥0) € G- and denote A = {a : (z0,%0) € Ga}
(thus p(k \ A) < r). If o € A, then (z9,y0) € G, and, hence, there are open
sets Uy, V,, in X, Y resp., such that (zg,yg) € Uy X Vo C Gqy. If o ¢ A we put
U, = X,V, =Y. We shall show that for some € > 0, the open set U. x V.
contains (xg,y0) and is contained in G,. It will suffice to take ¢ > 0 such that
u(e\A) +2 <.

Clearly, (zo,y0) € Uy x V; for every t > 0. Take now (x,y) € U x V;
we want to show that pu{a : (z,y) ¢ G4} < r. Our assumption implies that
pl{a:z ¢ Uy} <e,p{a:y ¢ Vy} <e. Since

{a:(z,y) § Go} Cr\AU{a € A: (z,y) ¢ Uy x Vo } C
k\AU{a€eA:x¢ U, JU{acA:x¢V,},

we have p{a : (z,y) ¢ Go} < p(k\ A) + 2e < r, which was to prove.

3. C is k-productive. Take X € C, an open family G = {G,}, in X* for
a A < k, and r €]0,1]. Choose & € G, (thus u(k\ A) <r, where A ={a:2 €
G,}). For a finite subset F' of A denote Ap = {a : ¢ € G4 and there exists
a canonical open neighborhood Uy C G of # in X* with pry p(Us) = XMF.
Clearly, the net {A\ Ap : F € [A\]<*¥} converges to () and since p is k-continuous,
there is a finite F' such that u(A\ Ar) < €, where we choose ¢ in such a way that
u(k\ A) + 2e < r. For a € A take the corresponding neighborhood U, from
the definition of Ay and define V,, = prp(U,); for a ¢ Ap define V, = X¥. We
know from the previous part 2 that X € C and so, the sets {Va}s are open for
every s > 0. Moreover, prp(z) € {V,}s for every s > 0. Take now y € X* with
prr(y) € {Val}e. Since

{a:y¢GatCla:2¢GutU{a:xz € Gy,prp(y) ¢ Vot C

{r\A}U(A\ Ar)U{a € Ap :prp(y) ¢ Va}

and, thus, u{a:y ¢ Go} < u(k\ A) + &+ ¢ < r. Consequently, prp' ({Va}e) is
a neighborhood of z contained in G,.

4. C is not kT -productive. We shall show that 2 ¢ C. For a € &
take G, = pr;'(0). Clearly, 0 € G, for every r > 0. It suffices to prove
that no neighborhood of 0 is contained in G, /,. Take a finite set F' C x and
the basic neighborhood Urp = {z € 2" : prp(z) = 0} of 0. If y € 2" then
{a:y ¢ Gy} = {a:pry(y) = 1}. So, if we take for y € Up the characteristic
function of k \ F', we have u{a :y ¢ G} = 1 and, hence y ¢ G, /,. <&

When we try to prove that productivity number of a coreflective class C
in Top is submeasurable, we meet several difficulties. If k is the productivity
number of C, there is a noncontinuous mapping f of a power X* (for some



X € () into a topological space Y that is continuous on the coreflection of X*
in C. To prove that x is submeasurable, we need Y to be R or its subspace and,
also, we need a nice space X. If we work in completely regular spaces, then we
can choose R as the space Y. Noble’s result from [10] asserts that in that case
the mapping f is not continuous either on 2 (and then we are done) or on a
Y-product of X’s. One can prove that the latter case cannot occur (as we did
in Theorem 2) for spaces X with characters less than x only. How to proceed
for X having large characters is not clear now.
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