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Introduction

There are two prime reasons for the success of the structure and representation
theory of locally compact groups: The existence of Haar integral on a locally
compact group G and the successful resolution of Hilbert’s Fifth Problem with
the proof that connected locally compact groups can be approximated by finite
dimensional Lie groups. Lie groups themselves have a highly developed structure
and representation theory.

Haar measure is the key to the representation theory of compact and locally
compact groups on Hilbert space, and the wide field of harmonic analysis with
ever so many ramifications (including e.g. abstract probability theory on locally
compact groups). A theorem of A. Weil’'s shows that, conversely, a complete
topological group with a left- (or right-) invariant measure is locally compact.
Thus the category of locally compact groups is that which is exactly suited for
real analysis resting on the existence of an invariant integral. One cannot expect
to extend that aspect of locally compact groups to larger classes.

However, from a category theoretical and from a Lie theoretical point of view
the class of a locally compact groups has defects which go rather deep. Indeed
while every locally compact group G has a Lie algebra £(G) and an exponential
function exp: £(G) — @G, the additive group of the Lie algebra is never locally
compact unless it is finite dimensional. Apart from individual studies such as
[2,5,7,8], the Lie theory of locally compact groups has never been systematically
considered or exploited, although a good start was made in [4] for the purpose of
a structure theory of compact groups.

Thus from the view point of Lie theory, the category of locally compact groups
appears to have two major drawbacks:

—The topological abelian group underlying the Lie algebra £(G) fails to be locally
compact unless £(G) is finite dimensional. In other words, the very Lie theory
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making the structure theory of locally compact groups interesting leads us outside
the class.

—The category of locally compact groups is not closed under the forming of prod-
ucts, even of copies of R; it is not closed under projective limits of projective
systems of finite dimensional Lie groups, let alone under arbitrary limits. In other
words, the category of locally compact groups is badly incomplete.

Let us denote the category of all (Hausdorff) topological groups and continu-
ous group homomorphisms by TOPGR. It turnes out that the full subcategory
proLIEGR of TOPGR consisting of all projective limits of finite dimensional Lie
groups avoids both of these difficulties. This would perhaps not yet be a sufficient
reason for advocating this category if it were not for two facts:

—Firstly, while not every locally compact group is a projective limit of Lie
groups, every locally compact group has an open subgroup which is a projective
limit of Lie groups, so that, in particular, every connected locally compact group
is a projective limit of Lie groups.

—Secondly, the category proLIEGR is astonishingly well-behaved. Not only is
it a complete category, it is closed under passing to closed subgroups and to those
quotients which are complete, and it has a demonstrably good Lie theory.

It is therefore indeed surprising that this class of groups has been little inves-
tigated in a systematic fashion.

A serious beginning of such an investigation is made in [6] where it is submitted
that a general structure theory of locally compact groups should be based on a
good understanding of the category proLIEGR.

This article presents a crisp overview of some of the central results whose proofs
will be detailed and whose background and applications will be discussed in [6].

1. Core results on pro-Lie groups

For a description of some basic results on the theory of projective limits of Lie
groups some technical background information appears inevitable.

Definition 1.1. A projective system D of topological groups is a family of of
topological groups (C;) e indexed by a directed set J and a family of morphisms
{fix:Cr — C; | (4,k) € J xJ,j < k}, such that f;; is always the identity
morphism and ¢ < j < k in J implies f;x = fi; o fjx- Then the projective limit of
the system lim;e s Cj is the subgroup of [],. ; C; consisting of all J-tuples (z;);e
for which the equation z; = fjx(zx) holds for all j, k € J such that j < k. O

Every cartesian product of topological groups may be considered as a projective
limit. Indeed, if (G4 )aca is an arbitrary family of topological groups indexed by
an infinite set A, one obtains a projective system by considering J to be the set of
finite subsets of A directed by inclusion, by setting C; =[], j G, for j € J, and
by letting f;r: C; — Cj for j < k in J be the projection onto the partial product.
The projective limit of this system is isomorphic to [, 4 Ga-
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There are a few sample facts one should recall about the basis properties of
projective limits (see e.g. [1], [2], [9], or [6] 1.27 and 1.33):
Let G = limjc s G be a projective limit of a projective system

P:{fjkGk—>G3|(],k)€JXJ,jSk}

of topological groups with limit morphisms f;: G — G, and let U; denote the
filter of identity neighborhoods of G, U the filter of identity neighborhoods of G,
and N the set {ker f; | 7 € J}. Then U has a basis of identity neighborhoods
{fi'(U) | k € J,U € U} and N is a filter basis of closed normal subgroups
converging to 1. If all bonding maps fjx:G; — Gy are quotient morphisms and
all limit maps f; are surjective, then the limit maps f;: G — G are quotient
morphisms. The limit G is complete if all G; are complete.

Definition 1.2. For a topological group G let N (G) denote the set of closed
normal subgroups N such that all quotient groups G/N are finite dimensional real
Lie groups. Then G € N(G) and G is said to be a proto-Lie group if

(1) N(G) is a filterbasis.

(2) N(G) converges to 1.

If, furthermore, the following condition (3) is satisfied it is called a pro-Lie
group:

(3) G is a complete topological group, that is, every Cauchy filter converges. O

The full subcategory of the category TOPGR of topological groups and contin-
uous homomorphisms consisting of all pro-Lie groups and continuous homomor-
phisms between them is called proLIEGR.

Every product of a family of finite dimensional Lie groups [ | jeJ G is a pro-Lie
group. In particular, R’ is a pro-Lie group for any set J which is locally compact
if and only if the set J is finite. The subgroup

{(99)jes € H Gj:{j€J:g;#1}is finite}
JjeJ

is a proto-Lie group which is not a pro-Lie group if J is infinite and the G; are
nonsingleton. Every proto-Lie group has a completion which is a pro-Lie group.
A topological group G is called almost connected if the factor group G/Gy modulo
the connected component GGy of the identity is compact. In the middle of the
last century it was proved that every almost connected locally compact group is a
pro-Lie group.

Every pro-Lie group G gives rise to a projective system

whose projective limit it is (up to isomorphism). The converse is a difficult issue,
but it is true.
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Theorem 1.3. FEwvery projective limit of Lie groups is a pro-Lie group. FEvery
closed subgroup of a Lie group is a pro-Lie group. FEvery quotient group of a
pro-Lie group is a proto-Lie group and has a completion which is a pro-Lie group.

Proof. [6], 3.34, 3.35, 4.1; [7]. 0

In a topological Lie algebra g the filterbasis of closed ideals j such that dimg/j <
oo i denoted by Z(g).

Definition 1.4. A topological Lie algebra g is called a pro-Lie algebra (short for
profinite dimensional Lie algebra) if Z(g) converges to 0 and if g is a complete
topological vector space. O

Under these circumstances, g = limjez(q) g/j, and the underlying vector space
is a weakly complete topological vector space, that is is the dual of a real vector
space with the weak star topology. For a systematic treatment of the duality of
vector spaces and weakly complete topological vector spaces we refer to [4], pp.
319ff. The category of pro-Lie algebras and continuous vector space morphisms is
denoted proLIEFALG.

Theorem 1.5. (i) The category proLIEGR of pro-Lie groups is closed in TOPGR
under the formation of all limits and is therefore complete. It is the smallest full
subcategory of TOPGR that contains all finite dimensional Lie groups and is closed
under the formation of all limaits.

(ii) The category prolLIEALG of pro-Lie algebras is closed in the category of
topological Lie algebras under the formation of all limits and is therefore complete.
It is the smallest category that contains all finite dimensional Lie algebras and is
closed under the formation of all limits.

Proof. [6], 3.3, 3.36; [7]. 0

Definition 1.6. A topological group G is said to have a Lie algebra £(G) if the
space Hom(R, G) of all continuous one parameter subgroups (i.e. morphisms of
topological groups) X:R — G has a continuous addition and bracket multiplica-
tion making it into a topological Lie algebra in such a fashion that

(X +Y)(r) = lim X(D)Y(>)
and T T T T
X, ¥]0%) = lim X()Y(O)X(H)TV(H)™

If G has a Lie algebra, set exp X = X(1) and exp(r-X) = X(r) and call
exp: £(G) - G

the exponential function of G.
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Theorem 1.7. FEwvery pro-Lie group G has a pro-Lie algebra as Lie-algebra, and
the assignment £ which associates with a a pro-Lie group G its pro-Lie algebra is
a limit preserving functor.

Proof. Chapters 2 and 3. O

In fact, a portion of this set-up allows a considerable improvement which we
summarize in the next section.

2. The Category Theoretical Version of Lie’s Third Theorem

Definition 2.1. A pro-Lie group is said to be prosimply connected if N(QG)
contains a cofinal subset AS(G) such that G/N is simply connected for every
N € N§(G). O

This turns out to be the right concept of simple connectivity for pro-Lie groups
in all respects, and it reduces correctly to simple connectivity in the case of finite
dimensional Lie groups.

Theorem 2.2. (Lie’s Third Theorem for pro-Lie groups) The Lie algebra func-
tor £:prolLlEGR — proLIEALLG has a left adjoint I'. It associates with every
pro-Lie algebra g a unique prosimply connected pro-Lie group T'(g) and a natural
isomorphism ng: g — £(I'(g)) such that for every morphism ¢:g — £(G) there is
a unique morphism ¢':T'(g) — G such that ¢ = £(¢’) o nyg.

Proof. [6], 5.5 and 5.6. 0

In fact, for each pro-Lie algebra g I'(g) is a projective limit of a projective
system of simply connected Lie groups. The fact that £ is a right adjoint confirms
its propty of preserving all limits.

Remarkably, £ preserves some colimits as well:

Theorem 2.3. The functor £ preserves quotients. Specifically, assume that G is
a pro-Lie group and N a closed normal subgroup and denote by q:G — G /N the
quotient morphism. Then G/N is a proto-Lie group whose Lie algebra £(G/N)
is a pro-Lie algebra and the induced morphism of pro-Lie algebras £(q): £(G) —
£(G/N) is a quotient morphism. The exact sequence

0— £(N)— £(G) — £(G/N)—0
induces an isomorphism X + £(N) — £(f)(X) : £(G)/L£(N) — £(G/N). O

The core of Theorem 2.3 is proved by showing that for every quotient morphism
f:G — H of topological groups, where G is a pro-Lie group, every one parameter



6 The Categories of Pro-Lie Groups and Pro-Lie Algebras

subgroup Y:R — H lifts to one of G, that is, there is a one parameter subgroup
o of G such that Y = foo. ([6], 4.19, 4.20.) This requires the Axiom of Choice.

Corollary 2.4. Let G be a pro-Lie group. Then {£(N) | N € N(G)} converges
to zero and is cofinal in the filter T(£(G)) of all ideals i such that £(G)/i is finite
dimensional.

Furthermore, £(G) is the projective limit limyear(q) £(G)/L(N) of a projective
system of bonding morphisms and limit maps all of which are quotient morphisms,
and there is a commutative diagram

£ . .
g@) 0o Llimyen(e) ) = hmneMG)%
expGl J{S(limNeN(G) expg/N)
VG
Proof. [6], 4.21. 0

Theorem 2.3 expresses a version of exactness of £. But there is also an exactness
theorem for I'.

Theorem 2.5. IfY is a closed ideal of a pro-Lie algebra g, then the exact sequence

7

0—bh >g 2 »g/h— 0

imduces an exact sequence

L'()

() — 25T (g/h) — 1,

in which T'(j) is an algebraic and topological embedding and T'(q) is a quotient
morphism.

1 —T(h)

Proof. [6], 5.7, 5.8, and 5.9. O

3. Quotient preservation by the Lie algebra functor
There are some notworthy consequences of Theorem 2.3.

Proposition 3.1. Any quotient morphism f:G — H of pro-Lie groups onto a
finite dimensional Lie group is a locally trivial fibration.

Proof. [6], 4.22 (iv). 0

For a topological group let E(G) denote the subgroup generated by all one-
parameter subgroups, that is

E(G) = (exp £(G)).
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Proposition 3.2. (i) For a pro-Lie group G, the subgroup E(G) is dense in
Gy, i.e. E(G) = Gy. In particular, a connected nonsingleton pro-Lie group has
nontrivial one parameter subgroups.

Proof. [6], 4.22(3). 0

Corollary 3.3. For a pro-Lie group G the following statements are equivalent:
(a) G is totally disconnected.
(b) £(G) = {0}.

(c) The filter basis of open normal subgroups of G converges to 1.
Proof. [6], 4.22. O

We note that for any pro-Lie group G, the additive group of its Lie algebra
£(G) is also a pro-Lie group. So for an abelian pro-Lie group G, the exponential
function exp: £(G) — G is in fact a morphism of pro-Lie groups, and the underlying
additive group of £(G) is the group I‘(S(G)) All of this applies, in particular, to
locally compact abelian groups and, in particular, to compact abelian groups. In
[4], Chapters 7 and 8, one finds the information that for a compact abelian group
G, the kernel of the exponential function exp: £(G) — G is naturally isomorphic to
the fundamental group 71 (G), and that the image of exp is the arc component G,
of 1 in G. Thus there is a bijective morphism £(G)/m1(G) — G,. It is proved in [8]
and in [6], 4.10ff. that for a compact connected abelian group G this morphism is
an isomorphism iff in the character group Gof G every finite rank pure subgroup is
a free direct summand. Whenever this condition is satisfied, GG, is a quotient of the
pro-Lie group £(G) and this quotient is incomplete if G is not arcwise connected.
The simplest such example is the character group G of the discrete group ZN. In
this case £(G) = Hom(ZN,R) = R2"° , and this vector group is a simple example
of a pro-Lie group with an incomplete quotient group.

Quotients of pro-Lie groups, after all of this, are a somewhat delicate matter.
It is therefore good to have sufficient conditions for quotients to be complete, such
as for instance in the following theorem.

Theorem 3.4. The quotient of an almost connected pro-Lie group modulo an
almost connected closed normal subgroup is a pro-Lie group.

Proof. [6], 4.28. O

4. Core results on pro-Lie algebras

In view of the functorial correspondence set up between the categories proLIEGR
and proLIEALG every piece of information on pro-Lie algebras translates at once
into information on pro-Lie groups; this translation process is often referred to
as Lie Theory. Chapter 7 of [6] gives details on the workings of a Lie theory of
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pro-Lie groups. It is this Lie theory of pro-Lie groups that calls for a thorough
understanding of the fine structure of pro-Lie algebras in the first place.

Definition 4.1. A pro-Lie algebra g is called semisimple if it is isomorphic to a
product ] jeJ 5 of a family of finite dimensional simple real Lie algebras s;. A
pro-Lie algebra g is called reductive iff it is isomorphic to a product of an abelian
algebra R! for a set I and a semisimple algebra s. g

Definition 4.2. For subsets a and b of a Lie algebra g let [a, b] denote the linear
span of all commutator brackets [X,Y] with X € a and Y € b. Inductively,
define (") = gl'l = [g, g] and g("*+V) = [g(), g(™], gln+1] = [g, g[n)]. A Lie algebra
g is said to be countably solvable if 2, g™ = {0} and countably nilpotent if
Moo, g™ = {0}. If a Lie algebra g has a unique largest countably solvable ideal,
then it will be called the radical t(g), and if it has a largest countably nilpotent
ideal, then it will be called the nilradical n(g).

If the pro-Lie algebra g happens to have a unique smallest member among
the family of all closed ideals i such that g/i is reductive, then it is called the
coreductive radical Neored(g)- O

Theorem 4.3. FEvery pro-Lie algebra g has a closed radical, a closed nilradical
and a coreductive radical such that the following properties are satisfied:
(1) Tcorea(8) € n(g) C t(g)-

(i) necorea(8) = [, 8] N t(g) = [9,t(g)]
(iii) g/t(g) is semisimple and g/ncoreda(g) is reductive.

Proof. [6], 6.48, 6.66, 6.67. O

For finite dimensional Lie algebras, these are standard facts, but for pro-Lie
algebras, a lot is to be proved here. Solvability for infinite dimensional Lie algebras
is really a transfinite concept involving ordinals, and for topological Lie algebras
we must also consider the closed commutator series. It turns out that with pro-Lie
algebras one never has to go beyond the commutator sequence indexed by natural
numbers, and that the algebraic and topological concepts of solvability agree.
Similar comments apply to nilpotency. An effective treatment of semisimplicity
and reductivity involves the duality of weakly complete topological vector spaces
applied to g-modules.

But indeed more is true.

Definition 4.4. For a a pro-Lie algebra g, a subalgebra s is called a Levi summand
if the function
(X,Y)»X+Y:t(g)xs—g

is an isomorphism of topological vector spaces. O

For each X in a pro-Lie algebra g, a derivation ad X and an automorphism of
topological Lie algebras 24X are defined by (ad X)(Y) = [X,Y] and e*dX (V) =
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Y - L.(ad X)*(Y), where the infinite series is summable (that is, the net of

n=1n!
finite partial sums converges for all X and Y).

Theorem 4.5. (The Levi-Mal’cev-Theorem for Pro-Lie Algebras) FEvery pro-
Lie algebra g has Levi summands s so that g is algebraically and topologically the
semidirect sum t(g) ® s. Fach Levi summand s = g/t(g) is semisimple. For two
Levi-summands s and s, there is an element X € ngored(8) in the coreductive
radical such that s, = e24Xs.

Proof. [6], 6.52., 6.76. O
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