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Abstract

We describe the graded ring of symmetric Hermitian modular forms of even weights
and degree 2 over Q(v/—2) in terms of generators and relations. All the 8 generators of
weight up to 12 are Maaf lifts and some of them can also be obtained from Borcherds
products. Moreover we construct generators for the module over this ring consisting of
all Hermitian modular forms with respect to the commutator subgroup. As an applica-
tion the field of Hermitian modular functions over Q(+/—2) is determined. Finally we
construct 5 algebraically independent symmetric Hermitian modular forms in terms of
theta series.

1. Introduction

In the 1960’s Igusa [Ig] described the graded ring of Siegel modular forms of degree 2. By
the same method Freitag [F]| was able to determine the graded ring of symmetric Hermi-
tian modular forms of degree 2 over Q(v/—1), where Nagaoka and Ibukiyama completed a
description in terms of generators and relations. Considering Q(v/—3) analogous results
are known due to [DK]. Partial results on the case Q(v/—2) were obtained by Freitag
and Hermann [FH| by embedding its ring of integers into the Hurwitz quaternions.

In this paper we describe the graded ring of symmetric Hermitian modular forms of even
weights and degree 2 over Q(v/—2) completely. All the 8 generators are obtained as
Maafs lifts or as Borcherds products similar to [DK]. We need the Siegel-Eisenstein series
of weight 4,6,8,10 and 12, which are algebraically independent, as well as the three



products of two Hermitian modular forms with respect to the non-trivial abelian char-
acter (cf. Corollary 5). Unfortunately the method is much more involved than in [DK]
since we cannot construct a Borcherds product with a simple divisor set. Any Borcherds
product vanishes at least on two rational quadratic divisors of different discriminants.
Moreover divisors of higher order occur (cf. Theorem 3). We have to construct liftings
of Siegel modular forms with respect to the paramodular group of level 2 resp. 3 which
were determined in [IO] resp. [D3]. As an application we can describe the graded ring
with respect to the commutator subgroup and the field of Hermitian modular functions.
Moreover we can construct 5 algebraically independent symmetric Hermitian modular
forms in terms of theta series which already appear in the paper by Freitag and Hermann

2. The Maal} space

The Hermitian half-space of degree 2 is given by

— _ (7T Z 2%2, l _ —tr
Hy(C) _{Z_ (w T,) e C% 2i(Z Z )>O}
where ¢r stands for the transpose and 7, 7’ belong to the upper half-plane H in C. Let
K = Q(iv/2) be the imaginary quadratic number field of discriminant —8 with its ring
of integers
0 =7+ 7iV2

and its inverse different

ol = 1
2i\/2

The attached Hermitian modular group is defined by

0.

D= {Meott MIM" =}, J=J(4)=<g _OI>, 1:1@):((1) 2)

Since the commutator subgroup CI's has the index 2 in I'g, there exists exactly one
non-trivial abelian character v on I'y, which extends the non-trivial character of Spy(Z)
(cf. [D1]). If o is an arbitrary abelian character and k € Z, the vector space [['s, k, 0]
of all Hermitian modular forms of weight k and character o consists of all holomorphic
functions F' : Hy(C) — C satisfying

flkM(Z) := det(CZ + D)™ - f(M(Z)) = o(M) - f(2)

for all M € 'y (cf. [Br]). The subspace [y, k, 0o of cusp forms is characterized by the
condition

fle =0,

where ® stands for the Siegel ®-operator. The superscript sym resp. skew denotes the
subspace of symmetric resp. skew-symmetric modular forms characterized by

fOItr:f resp. foItr:_f,



where I,.(Z) = Z'". Examples are given by the Eisenstein series
Ey € [T, k, 115%™,  Ep|®> =1, k> 4even

(cf. [DK], in particular for & = 4). Each F € [I'3,k,1] possesses a Fourier and a
Fourier-Jacobi expansion of the form

00
f(Z) — Z ap (T) e27ritrace(TZ) _ Z Om (7_’ 2, w)eQWiTnTI.
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We define the Maafl space My, to consist of all Maaf lifts of Jacobi forms of weight k
and index 1 just as in [S], [H].

Theorem 1. a) If k > 4 is even one has
sym N k
Ep e My, My C Do,k 1™ and dim My = oo 1.

b) If k > 5 is odd one has

My, C [T, k, 1% and  dim My, = [’“6%3]

In particular there exist unique Gy € My, with

My =CGy, ag, (—i/lzﬁ 1/21*/5):1, k=9,11,13.

Proof. a) Apply |DK], Corollary 2, and the dimension formula in [S] resp. [A], Theorem
5.2. The Maa#f lifts are symmetric, because [K2|, sect. 4, yields a representation

prew) = 3 Ju) bunzmw), D= Y a (g "1‘) it N,
w0t O n€Ng,n>N(u)
N (u) := v, of the first Fourier-Jacobi coefficient as well as the relations
O0u(T, 2, w) = Ou(T,w,2), fu(T) = falT).
b) Apply the dimension formula in [S] resp. [A], Theorem 5.2, and verify that
Ja=—fu- 0

It should be noted that M; = My = M3 = {0} will be shown later. Considering the
first Fourier-Jacobi coefficient ¢; of F' € My, k odd, we have a representation

1 1 1
(pl(Tazaw):fu'[gu_e—u]-l_fv'[e’u_e—v]a U= —F= ’U::§+2Z’\/§.

Applying [K2], Lemma 4 and Corollary 4, we obtain
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fulr+1) = e*““ fu(T),  folr 1) =e A £ (1),

fuly oI = S (FatFo)y folp I = _( —fo), J=JO.

v 2

Define a character p : I'g(4) — C* by
L 1\  qip 10y _ -1 0 _
p(() 1)—6 ? p 4 1 - 1a P O _1 _17
as well as

Ay = {g € Do), k=1, g~ Vag|,_,J € [Lo(@), k-1, pl}.
Let n(7) denote the Dedekind eta-function and 6(7) =3, ., €™n’T the standard theta-
function.

Corollary 1. Let k € N be odd. Then the map
M = Ag—1, F = fo,
s an isomorphism and one has
Ap-1 = 7°(r)0(27) - [SLa(Z),k - 9,1]

®n'B(r)02r) - [6*(2r )—8077 22 ; [SLy(Z), k — 11, 1].
Proof. Only the description of Ag 1 remains to be proved. Therefore apply [C]|. The
functions above belong to Ag 1 and the sum is direct because the non-trivial quotients

are not invariant under SLs(Z). Thus the claim follows from the dimension formula in
Theorem 1. O

Next we consider the non-trivial character v on I's. Hence every F € [['s, k, v] possesses
a Fourier- and Fourier-Jacobi expansion of the form

2
F(Z) — Z aF(T) 2nitrace (T'Z) Z (Pm/2 T, % w)emmT
T_( T m ) 20 :nnodld
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Let Mj denote the MaaR space consisting of all lifts of Jacobi forms of index % similar
to [M] and [K3|. Each Jacobi form of index 1 possesses a representation

pr/2(Tyz,w) = fu(7) - O4(7 2,w) + i (7) - 05(7, 2, w),

* _ - n+1/2 —a/z\/_ 2mi(n—N(a)+1/2)T
L) = Yar (a/“f L )e (n-N(@+1/2)7,

Oi(r,zw) = —i Y erN@OTHFsguiReg),
+0

n=0

a
9€ =275



The behavior of 87,0 under SLy(Z) can be obtained from [H]. Hence we get

L 1
V2 V2
fiedia = {geTo@)k-1,0"75 g+vV2g|,_J € Do),k ~1,57] }.

fqﬂkfl‘] = (qu"‘f:)a fqﬂk,l‘]: (f':_f:)’ J:J(2)>

Theorem 2. One has M}, = {0}, if k is even. Ifk € N is odd Mj, C [T'g, k,v]*¥"™ holds.
The map
M~ iy, o £

is an isomorphism and one has

dim Mj, = [%] .

In particular there exist unique modular forms Fy € [T'a, k,v]*¥™ satisfying

1/2 (1+iv2)/4

Mi =CF,  an, ((1 —iv/2)/4 1/2

>=L k=35,T.

Proof. Only the dimension formula remains to be proved. Therefore check that the map-
ping
Aoy = Akys,  g(7) = n'2(7) - g(7),

is an isomorphism and use Theorem 1b). O

Note that the Fourier expansions of F3, F5, F7 and Gg, G11, G13 can easily be computed
by means of Corollary 1.

3. Borcherds products

It was pointed out in [DK]| how to construct Borcherds products, which are Hermitian
modular forms with respect to the extended modular group I'y = (T2 U {Ii}). The
obstruction space [SLy(Z), 3, p], where pr, is the Weil representation, has the dimension
2. It is spanned by the Eisenstein series

63(7‘) =1-92. gemﬁ'/él _ Eem”rﬂ _9. Ee37ri7'/4 _ 34e7rir _ @637Ti7'/2 _ @627”'7 +...

3 3 3 3 3 3
(cf. [DK], section 3) and the theta series
@(7.) — Z (}\2 +X2)e27riN()\)T
Aeot

- _9. %emﬁ'/él + e7ri7'/2 +2. %63ﬂi7/4 o 2e7ri'r o 2637ri’r/2 + 4627ri7' +...

where the components can be recovered from these functions. Hence it suffices to verify
by a simple calculation that the main parts below satisfy Borcherds obstruction condition



[B2], Theorem 3.1:
e~TiT/2 4 9 9p-miT/4
9. e 3mT/A | o gumir/d
¢TI | 9 TiT/2
—3miT/2 | 9 —mir/2

e~ 2miT _ e—7rz7'/2 +92. 6e—mr/4

+6
+ 16
+ 18
+ 40

+ 48.

We obtain Borcherds products ¢ with respect to T'5, which have zeros along rational
quadratic divisors with discriminants < 8. Since I'y acts transitively on the set of rational
quadratic divisors of fixed discriminant (cf. [FH]) it suffices to consider the following

representatives:
Hi={Z € Hy(C); z=w} = Hs(R),
Ho ={Z € Hy(C); w = —=z}
)

wl»—A

ng{ZeHg(C,w

s1)) - o[l
v el
) = {zlhas

”H4:{ZEH2(C),w

Wl

(©; w= (-
( -
Ho={7 € Hy(C); w=(}-
( 1 -

HSZ{ZEHQC), w =

where A[B] := B" AB. Thus [DK], Theorem 5, yields

—{z [(1) ] Z € Hy(R)},

] 7 € Hy(R }

0 Zf) ZEHQ(R)}

iv2 0

] 7 ¢ HQ(R)}

g ={z[swa] +2 3

7 ¢ HQ(R)}

Theorem 3. There exist Hermitian modular forms ¢ € [CT9,k,1],k = 3,8,9, 20,24,
whose orders of zeros along the rational quadratic divisors are given by the following

table.

Hi | Ho | Hz | Ha

Hs

¢3 € [F2a 37 V]sym

¢8 € [F27 87 1]sym

¢9 € [F27 9, 1]Skew

$oo € [T',20,1]5¥™

DO NN
OIN|IN O
[eo) Ren) e} i Nan]
(e} Nen) Bl Nenll Nan]

¢24 € [FQ, 24, V]sym

Ob—*OOOi
(=]

=lololo|lo

Note that we have the following descriptions in terms of transformations from T:

Hy = {Z € Hy(C); Z = zt’},

fzfo
Zem(C); Z=(2")[§ 2]+ }

(
2= { (
v={Zem@); 7=72"+]
s = {7 € iy

Z € Hy(0); Z:(Z”)[é?]},

vlb



By virtue of these modular transformations Hermitian modular forms have got necessary
zeros described in the following

Lemma 1. a) If F € [CT9, k, 1]°*¢% then F =0 on H1 and F =0 on H,.

b) If F € [CT9,k,1]¥™ k odd, or F € [CT,k,1]°*¢“  k even, then F =0 on Ha.
¢) If F € [T9,k,1]%%™ k odd, or F € [Ta,k,1]°*¢? k even, then F =0 on Hs.
d) If F € [Ty, k,v]*¥™, k even, or F € [[a,k,v]***" k odd, then F =0 on Hg.

Proof. Apply the description of H; above and use the fact that

U o (1 0 I H (0 V2
(5 o)eers v=(5 &) (5 W) eere m=(_05 "),

(o 7)eers m=(1)

due to [D1]. O

A simple application concerns zeros of higher order.

Corollary 2. Let F' € [CT'y,k, 1]°¥™, s € Ny.
a) Iford F > 2s+1 on H1 = Ha(R), then ord F > 2s + 2 on Hy(R).
b) If k is even and ord F > 2s+ 1 on Ho, then ord F' > 25+ 2 on Ha.

Proof. a) Theorem 3 yields
G := Foosy/ 5T € [CTo, k + 6 4 175, 1]%Few.

One has G = 0 on Hs(R) due to Lemma 1 and therefore it follows that ord F > 2s + 2
on H2 (R)
b) Consider H := F(gs/¢s) 1 € [CTa, k + 5(2s + 1), 159, O

4. The structure theorem

In our case it does not seem to be possible to apply a reduction process along H; = Ho(R)
as in [DK]. In our approach we replace H1 by Hs as well as Hs and apply the structure
results from [D3]| resp. [1O].

Lett=2 a=iy/2o0ort =3 a=1-1iy2and M; := diag(1,a,1,a '), hence H; =
M;(H2(R)). This yields an embedding of the paramodular group Sp(§?) of level ¢ and
of its maximal discrete extension I'; of index 2 into the extended Hermitian modular
group Iy (cf. [K&], [DM]). Given F € [['9,k, 0] with F(Z!) = ¢- F(Z) we consider the
attached Witt vector

W,F : Hy(R) - C, Zw F(My(Z)), in [}k 0",

where o* : I'f — {£1} is the character uniquely determined by

(o )= 1) 7= 0) wo=ee (G w) v (1)
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Starting with F' € [[a, k, 1]°*¥™ we obtain W,.F' € [['}, k, 1].

Note that

(1) Fslyy #0,

since F5 = 0 on Hs as well as F5 = 0 on Hy due to Lemma 1 would imply
Fs¢3/¢s € [I'2,0,1]™ =C

with a zero along Hs. Thus this constant would be 0. On the other hand F5 = 0
contradicts Theorem 2.

Lemma 2. The graded ring @ co7['3, k, 1] is generated by
Ws(Ey), Ws(Es), W(¢3), Wa(¢sFs), W3(FZ), Ws(En).

Proof. Using [D3], section 5, and the notations there except E,(C3) for the Eisenstein series
in [T}, k, 1] we obtain

(2) Ws(ds) €[I3,3,5xl0 = Cyf,
Ws(Ey) €[[3,4,1] =CEY,
(3)  Ws(Fs) € [I'3,5,6x]o = Cipr1 fu,
Ws(Ee) €[I5,6,1] =CES +Cyf,
Wi(Er) € [[3,12,1] = CED + B + cE®’ + CE® y§ + CED g .

Hence E£3), Eé3), 8, i fa, 2 f2, Eg) appear as polynomials in the modular forms
quoted above, where one has to use a calculation on the Fourier coefficients in [K2] in

order to obtain ES) Then the result follows from [D3], Lemma 5.3. O

An easy consequence is

Corollary 3. a) Let F € [Ty, k,1]*¥™ k even. Then there erists an isobaric polynomial
P such that

(F — P(By, Be, 63, 63 Fs, FZ, E3)) % € [Ta, k — 5,0]™,

b) Let F € [I'9,k,v]*¥™ k odd. Then there exist isobaric polynomials Pi and P, such
that

(F — ¢3 - Pi(E4, Eg, ¢3, ¢3Fs, F2, E12) — Fs - Py(Ey4, Eg, Ei)) % € [T, k — 5, 1]°¥™
8

with zeros of order > 2 along Ho.
Proof. a) According to Lemma 2 we can choose P such that

F — P(E4, Es, ¢3, ¢p3F5, F2, E13) =0 on Ha.

8



Then Theorem 3 completes the proof.
b) Proceed as before. It follows from Lemma 2, (2) and (3) as well as the cases 1 and 4
in the proof of [D3|, Theorem 5.3 a), that P, and P» exist satisfying

F — ¢35+ Pi(E4, Eo, %, ¢p3Fs5, F2, B13) — F5 - Py(Ey, B, E12) =0 on Hs.

Then Theorem 3 and Corollary 2 complete the proof. O

This allows us to describe the spaces in the cases of small weights. Using the reduction
process in Corollary 3 as well as Theorem 1 and 2 we get

Lemma 3. a) If k = 2,4,6,8,10 one has [Ty, k,1]9™ = My, in particular
[[2,2,1]™ = {0}, [[2,4,1]*"™ =CEy, [[2,6,1]™ = CEs + Cg,
[[2,8,1"™ = CEj + C¢3 Fs + Cbs,

[FQ, 10, 1]sy’rn = (CE4E6 + (CE4¢§ + (CF52 + (CFl(), F10 = ¢8F5/¢3.

b) If k =1,3,5,7 one has [I'y, k, v]*¥™ = M}, in particular

[F27 1,V]sym = {0}’ [F2,37 V]sym = C¢3 = CF3, [F275a V]sym = CFs,
[FQ, 7, V]sym = C¢3E4 = (CF7

At this point we also have to consider the restrictions on Ho.

Lemma 4. EyEg|y, and Figly, are linearly independent.

Proof. Lemma 3 yields {F|y,; F € [I',10,1]*¥™} = CE4 Eg|3, + CF19|34,- Now proceed
in analogy with [DK], Theorem 1. According to [GN] the MaaR space in [I'4,10,1]
consists of the lifts of the classical space of Jacobi forms of weight 10 and index 2, which
has the dimension 2 due to [EZ]. O

An application yields

Corollary 4. The graded ring @55, k,1] is generated by
Wa(Es), Wa(Es), Wa(¢s), Wa(Fro) and Wi(Ers).

Proof. The restrictions do not vanish, which follows from Lemma 4 for Fiy. Using the
notation of [IO] with a superscript (2) we obtain

Wa(Ey) € [T5,k 1] =CF?, k=4,6,
Wals) € [T5,8,1]0 = CFy?,
W (Fio) € ['3,10,1]o = CGYY
Wa(Ero) € [15,12,1] = CFD + CF®” + cF?’ + cFO FP.
Now one calculates a Fourier coefficient in order to see that Fg) actually appears in the

description of Wo(E12) on the right hand side. Thus [IO], Theorem 1, completes the
proof. O



Now we have to determine certain vanishing ideals. Let
Tir(k) :={F € [['2,k,1]*¥™; F =0 on #; of order > r}

and

Liv = P L. (k).

k€27

Since the KEisenstein series are non-cusp forms and F5 = 0 on Ho due to Lemma 1,
Theorem 3, Lemma 3 and 4 yield

(4) T55(2) = Top(4) = {0}, Top(6) =Cd5, Tpp(8) = ChsFs + Cos,
T52(10) = CEy - ¢3 + CFZ.
This is used in the following

Lemma 5. There exists a modular form
Kig = c1Ey - p3F5 + cods + c3E6 - ¢35 + caEs + csE2 + coE1a + c1Ey - ¢g € [T, 12,1]59™
and 0 # v € C such that

F? = ¢3- K12+ vF5 - Fig, FZ - Fi = ¢g - K12 + 7F].

Proof. According to [DK], Theorem 5.2, there exists a relation

_ . . - 3 2
= St + st gD + B 4 B 1 2B

Due to Lemma 2, (2) and (3) we may choose K9 as above such that
W3(F3) = ai £} = Wa(d3 - Kia).
Hence F2 — ¢3 - K12 vanishes on H3. Then Theorem 3, Lemma 1 and (4) yield

(B2 — gy - K12)% € T,5(10) = CEB4 - 42 + CF2.

Choosing c¢7 properly we obtain vy € C with
F? = ¢3- K12+ vF5 - Fio.

Multiplication by ¢s/¢s yields the second equation.
If v = 0 then the right hand side and therefore F5 vanish on #; and Hs. Theorem 3
and Lemma 3 imply

F2/¢s € [Tg,7,0]5¥™ = C 3 Ey,

hence F2 = B¢3E,. Therefore it follows that ord F5 > 2 on #H; and finally the identity
F5/¢3 € [T'9,2,1]%%™ = {0} yields a contradiction. O

As a consequence of the last argument we have

(5) F5|my®) # 0, Fiolmyr) # 0.

We derive our main result.
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Theorem 4. The graded ring R := @y [l'2, k, 1]°Y™ is generated by
(6) Ey, Es, ¢35, ¢3Fs, ¢s, F3, Fio and By,

where Ey4, Eg, $3, ¢s, E12 are algebraically independent. All the generators are Maaf
lifts. The ideal of cusp forms in R is generated by

441 250
2 2 3 2
F; Fz, F d FE——F)— —E;.
¢3a ¢3 55 ¢85 5, 410 an 12 691 4 691 6
The ideal Iy = Ip2 is generated by

3, ¢35 and FY.

Proof. We show by induction on k that any F' € [['s,k,1]*¥™, k even, is an isobaric
polynomial in the modular forms (6) and that

Too(k) = ¢% - [To, k — 6,1]9™ + ¢3Fs - [Ta, k — 8,1]°Y™ + F2 - [T'9, k — 10,1]5¥™.

This is true for ¥ < 10 by Lemma 3 and (4). Starting with F' € [T'9, k, 1]%¥™, k& > 10, we
apply Corollary 3 and obtain polynomials P, P, P» such that

G = (F - P(E47 E67 ¢§a ¢3F5, F527 EIQ)) % S [FQ,k — 5’V]Sym’

8
H = (G - ¢3 ' P1(E4, Eg, ¢§a ¢3F5, F52, E12) — Fy - PQ(E4, Fg, Elz)) % € IQ’Q(k — 10).
The induction hypothesis yields

H=¢3-Hy+ ¢3F5 - Hy + F? - H3,

where Hy, Ho, H3 are polynomials in the modular forms (6). Hence it follows that

F = P (Ey, Eg, ¢3, ¢3Fs, F, E13) + ¢s - Py (Es, Es, ¢3, ¢3Fs, F5, Eq)
+ Fig - Py(E4, Eg, Er2) + ¢3 - Hi + ¢sFig - Hy + Ffy - Hj.

Thus R is generated by the modular forms (6).

Now let F' € Zy5(k), which is an isobaric polynomial in the modular forms (6). By
Lemma 5 we may suppose that

(7) F = Py (B, Es, 43, $3F5, ¢s, F5, Erz) + Fio- Py (Ey, Es, ¢3, ¢3F5, ¢s, F3, En2) .
Restriction to Ho yields

P\ (E4, Es, 0, 0, ¢, 0, E12) + Fig - Po(Ey4, Es, 0, 0, ¢3, 0, E12) =0 on Hs.
Hence Corollary 4 and [IO], Theorem 1, imply

Pl(Xla X2, 0, Oa X51 Oa X7) = PZ(Xla X27 0, 0, X5, Oa X7) =0.
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Thus F has a representation
F=¢2-Hg+ ¢3Fs- Hy+ F2- Hyy,  Hj € [Ta,k — j,1]"¥™.

Hence Z, 5 is generated by ¢3, ¢3F5 and FZ.

Let P be an isobaric polynomial with P (E4, Eg, ¢3, ¢s, F12) = 0. The restric-
tion to Hjz yields P(E4, Es, 43, 0, E12) = 0 and [D3|, Theorem 5.2 implies that
P(Xy, X5, X3, 0, X4) =0. Thus we have

P = ¢8 * ﬁ (E47 Eﬁ, ¢§’ ¢8, E12)

and an induction shows that Ey4, Ej, ¢§, ¢s, E'19 are algebraically independent.

In (6) the functions ¢2, ¢3Fs, ¢s, F2 and Fyg are cusp forms. Dealing with Ey, Eg, E1o
apply the Siegel ®-operator and use the well-known formula for elliptic Fisenstein series
in order to obtain the generators of the ideal of cusp forms quoted above.

The Eisenstein series are Maaf lifts due to Theorem 1 and the other generators according
to Lemma 3. O

We quote some other generators in the following
Corollary 5. The graded ring R = @ co5[2, k, 1]*Y™ is generated by
Ey, Eg, Eg, Ev, By and ¢35, ¢3F5, FZ,

where Ey, FEg, Eg, F1y, E1o are algebraically independent.

Proof. Apply Theorem 4 and Lemma 3. A calculation on the Fourier coefficients in
[K2], Corollary 8A, shows that the restrictions of EZ — Eg and Ej - Eg — Eyg to Ha are
non-zero, hence

(E? — Eg)|y, = ags|n, and (Es- Es — E1g)|a, = BF10ln,

with a £ 0, 8 # 0.

Due to Igusa’s result [Ig] and [DK], Corollary 2, the restrictions of E4, Eg, E19, E12
to Hy(R) are algebraically independent, whereas (Ef — Eg)|m,(ry = 0. Hence the 5
Eisenstein series are algebraically independent. O

Next Corollary 3b and Theorem 4 imply

Corollary 6. The R-module @y, ,4qL2, k,v]*Y™ is spanned by
¢3 and Fs.

We have to investigate vanishing ideals.

Lemma 6. a) The ideal T, 1 = I, 5 is generated by B3, d3F5, ¢pg and F2 — yFyp.
b) The ideal I3 is generated by ¢g and Fyp.
c¢) The ideal I3 is generated by qﬁg, ¢sFiog and F120.

12



Proof. a) Lemma 5 yields Fj - (F52 — 'yFw) = ¢3 - K12 = 0 on H;. Hence the modular
forms above belong to Z;o. Given F € I;2 we may reduce F' modulo the ideal 7
generated by @3, ¢3Fs, ¢s and FZ — yFig. By virtue of (7) we obtain

F = P (Ey, Eg, FZ, E19).

Since F2|3, is a non-trivial Siegel cusp form, the restrictions of E4, Eg, F2, E12 on H
are algebraically independent. Hence F = 0 follows.

b) Clearly ¢s and Fyg = F5¢s/¢3 vanish on Hz. Now apply Lemma 2 and 5 as well as
[D3], Lemma 5.3.

c¢) The mapping Zpo — Z32, F +— F¢%/¢%, is an isomorphism according to Theorem 3.
Now Theorem 4 completes the proof. O

According to the definitions resp. Lemma 5 we have the following relations

2
(¢3F5)* = ¢35 - FZ, (F2)" = ¢3F5 - K1p + YF2 - Fu,
¢35+ Fio = ¢3Fs - ¢s, ¢3Fs-F2=¢3 - Ko +y¢3Fs - Fuo,

¢3F5 - Fip = ¢g - F2, F?.Fio=¢s- Ko +Fp.

Now define the corresponding polynomials Q; € C[X7,..., Xg] by
Q1 = X; — X3Xg, Q2 = X§ — X4K — vX¢ X7,
Q3 = X3X7 — X4 X5, Q1 = Xy Xe — X3K — v X4 X7,
Qs = X4X7 — X5Xs, Qs = XeX7— XsK — X7,

where K = ¢; X1 X4 + c2X§ + 3 X9 X3 + C4Xf‘ + C5X22 + ¢ Xg + ¢7 X1 X5 due to Lemma,
5. We have

Q; (Es, Es, ¢3, ¢3Fs, ¢s, F2, Fig, E12) =0 forj=1,...,6.
Theorem 5. The graded ring R = @co5[2, k,1,]%¥™ is isomorphic to
C[X1,...,Xs]/Z,
where I is the ideal generated by Q1,-..,Qs.

Proof. Apply Theorem 4 and the relations above. Hence it suffices to show that any
P e C[Xy1,...,Xs] with P(E4,...,E12) =0 belongs to Z. We may reduce P mod Z and
may therefore assume that

P =8(X1, X9, X3, Xg) + Xy T(X1, Xo, X3, X3g)

+ ) (X6 X7) - [Xg - Pj(X1, X2, X3, Xg) + X7 - P} (X1, X5, Xs)]
3=0

+ 3 (X6 X7) - PP (X1, X2, Xs) + X5 - P(X1,..., Xs).
j>1

The restriction to Hs yields

S (Es, Es, 43, E12) + ¢3F5-T (By, Eg, ¢3, B1z) + F5 - Py (B4, Eg, ¢3, E12) =0 on Hs.
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Now Lemmma 2 and [D3|, Lemma 5.3, imply
S(X1, Xo, X3, Xs) = T(X1, X2, X3, Xs) = Py(X1, X2, X3, X35) = 0.

Next the restriction to H; yields

Fyy- Py (E4, Eg, E12)+Z (F52F10)J' [F2 - Pj(E4, Eg, 0, E12) + Fig - P} (Ey, Eg, E12)
j>1
+P;*(E4, EG, E12)] =0 on Hl.

According to Lemma 6 the restriction F2|y, = vyFig|y, is a non-trivial Siegel cusp form
of weight 10. Hence Igusa’s result [Ig] says that

Py (X1, X2, Xg) = P (X1, Xo, Xg) = —yPj(X1, X2,0, Xg) + P} (X1, X2, Xg) = 0.

Thus we have got

P =Y (XeXr) - [(X7 = £X6) - P (X1, X, Xs) + Xy - (X1, Xz, X, Xs)| + X5 - P.
Jjz1
Now note that
X6X7(X7 — %Xs) = —%Xg,K mod I, X3X6X7 = X4X5X7 mod I,

hence
PEX5-Q(X1,...,X8) mod 7.

Thus an induction completes the proof. O

Using Corollary 6 as well as Theorem 4 and 5 we obtain a related structure. According
to Lemma 5 we have

VFjy = F3 - Fio— ¢g- K12, YF5-Fio=F> — ¢3- K12, ¢3- Fio = F5 - ¢s.
Corollary 7. The graded ring @z L2, k,v¥]*¥™ is generated by
¢37 E47 F5a Eﬁa ¢87 FlOa El?a

where ¢3, Fy, Eg, ¢g, F1o are algebraically independent. It is isomorphic to the ring
C[X1,...,X7]/Z, where T is the ideal generated by

YXE - X2Xe+ X5Q, 7X3Xe— X3 +X1Q, X1Xs— X3Xs,

where Q = c1 X1 X0 X3 + CQ)({l + 63X12X4 + C4X§ + C5X£ + cg X7+ c7 X9 X5.
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5. Description of R-modules

In this section we describe @,c;[Cl'2,k,1] as an R-module. At first we need more
vanishing ideals of higher order.

Lemma 7. a) The ideal Ioo N1I39 is generated by
368, D3 Fs05, FE03, $aFs Py, Fi Fiy.
b) The ideal I 4 is generated by
83, $3Fs, B35, $sF5, Fy.
c¢) The ideal Ty 4 N3 is generated by

b3¢s, ¢3Fsds, Focs, F2Fy.

Proof. a) Let Z denote the ideal generated by the elements quoted above. Then Z C
Iy N 139 follows from Lemma 6 and Theorem 3. Now let F' € Ty NZ35. We may
reduce F' by Z in order to show that F +Z = Z. According to Lemma 6 we have got a
representation

F = ¢} Gy + ¢sFio- Go + Fhy - G,

where G; = Pj(E4, Eg, ¢3, ¢3Fs, ¢s, F2, Fig, E12) due to Theorem 3. By virtue
of (7) we may suppose that P; is of order < 1 in Fyjo. Shifting to the other fac-
tors allows us to assume that Fpy does not occur in P, and P,. Lemma 5 yields
F130 = %r (F52F120 - ¢8F10K12). Thus we may suppose that Fjg does not occur in Ps
and

F = ¢3 - Q1(Es, Eg, ¢s, E12) + ¢sFio - Qo(Es, Eg, ¢s, Er2)
+ (¢psK12 — F2F1o) - Q3(Ea, Eg, ¢, Er2).

Now Lemma 5 leads to

F = ¢3 - Q1(B4, Eg, ¢s, F12) + ¢sFi0 - Q2(E4, Eg, ¢3, Fi2)
+ ¢s (caE} + csE§ + cgE1z + c1¢sEs) - Q3(Es, Ee, ¢g, E12) =0 on Ho.

Then Corollary 4 and [IO], Theorem 1, imply that this relation can only trivially be
fulfilled, i.e.

Q2=0, X3Q1+ X3 (caX} +c5X5 + csXa+ 1 X3X4) Qs = 0.
Hence we have
F = ¢5- (c1¢3Fs By + cods + c3d3Ee — F2Fro) - Q3(E4, Ee, ¢s, Er2).
Another reduction mod Z allows us to assume Q3 = Q(F4, Fg, F12) as well as

(c1¢3FsEq + cady + c3¢3Es) - Q(E4, Eg, E19) =0 on Hs.
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Now Lemma 2 and [D3], Theorem 5.3, show that this equation must be trivial, i.e.
Q(E4, E6, E12) =0and F =0.

b) The mapping Zo s NZ3 2 — T4, F > F$3/¢2, is an isomorphism.

c) Proceed just as in a). O

As a first application we determine @, ,[CT2, k, 1]°*¥™ completely.

Corollary 8. a) The R-module @, ,44/T2, k,1]°¥™ is spanned by
$oats and  $uF5 (F5/¢s), j=0,1,2,3.
b) The R-module @, pen L2, k,v]*¥™ is spanned by
¢ou (F5/93) , j=0,1,2,3.
Proof. a) Let F' € [y, k,1]*¥™, k odd. Lemma 1 yields F' = 0 on Hy and Hg. We obtain

F 3/ doa € Tra(k — 15)

from Theorem 3. Now Lemma 7 completes the proof.
b) Let F € [Ty, k,v]¥™, k even. Lemma 1 yields F' = 0 on Hg. Consider

F¢3¢s/pos € Toa(k —10) N T31(k — 10)
due to Theorem 3. Now Lemma 7 completes the proof again. O

We add a few

Remarks. a) The restrictions of F5 and ¢o4F3/¢3 to Ha(R) do not vanish identically.
Hence {F|g,m®); F € [CT2,k,1]*¥™} coincides with the space of Siegel modular forms of
weight k with respect to the commutator subgroup CSps(Z) (cf. [Ig]).

b) The restrictions F|y,, F' € [CT2, k,1]*¥™, yield Siegel modular forms with respect to
I'5(2) < Sp2(R) in the notation of [Ib]. Our results and the appendix in [Ib] show that
these restrictions are not surjective in general.

Next we investigate skew-symmetric modular forms.

Lemma 8. Let k € N, k <11 be odd. Then
[Ty, k, 1]5%¢% = M}
holds, in particular

[Ty, k, 1)k = {0}, k=1,3,5,7,
[[2,9, 1]°%¢% = C¢g = CGy, [Ty, 11,1]%%¢% = CGY;.

Proof. Given F € [I'y,k, 1]5’“6“’ one has F = 0 on H; and H4 due to Lemma 1. Then
F$3/¢9 € Ty 4(k — 3) follows. Now apply Lemma 6, dimZ; 4(8) < 1 as well as Theorem
2. O

This allows us to derive
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Corollary 9. a) The R-module @ ,pen T2, k, v]**Y is spanned by

Pabo [
¢3 ' b3
b) The R-module @), Odd[Fg,k,l/]Skew is spanned by

P94 F5¢g9paa
¢3 ¢

Proof. a) F € [Ty, k,v]**®”, k even, vanishes on H1, Ha, H4. Hence

F
—¢3 € ILQ(k — 6)
9

$3dg, Fsg, (F2 — yFy)

follows. Now use Lemma 6.
b) F € [Ty, k,v]**¢? K odd, vanishes on H1, H4, Hg, hence

3F
P94
Thus Corollary 8 completes the proof.

€ [g, k — 24, V)™,

Finally we obtain

Corollary 10. a) The R-module @, ,,.,[T2,k, 1]°*¢ is spanned by

Podos  Fspopos  FZogoa .

¢3 ¢35 3
b) The R-module @, ,4q[T2,k, 1]°*% is spanned by
2
¢9, G, ¢8—(§9, (F2 —’yFlo)%-
3

Proof. a) F € [y, k,1]**¢”  k even, vanishes on H;, Ha, H4 and Hg due to Lemma 1.
Thus Theorem 3 yields
g3 F
P9 s

S IQ’Q(k — 24)

Now apply Theorem 4.
b) Given F € [I'g,k,1]***¥ &k odd, one has W3(F) € [I'},k,x] and [D3], Theorem 5.2
yields

[F§7k7X] = ¢:1”¢6 : [Fg,k - 9, 1] + ¢1¢4¢6 ' [Fg,k - 11, 1]'

In particular these spaces are one-dimensional and spanned by W3(¢g) resp. W5(G11) if
k=9,11, because G11 = 0 on ‘Hz would imply

¢3G11 € [FQ,G,V]Skew — {O}

bs
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due to a) as a contradiction. Using Lemma 2 we find G € [I'2,k — 9,1]*¥™ as well as
H € [Ty, k — 11,1]%¥™ such that

F—¢9-G—G11-H:0 on Hg.

Hence Theorem 3 leads to
(F—¢g-G— Gy -H)% € [Ty, k — 5, v]%kew.
Now apply Corollary 9. O

According to the orthogonal relations for characters we have determined € .,[CT2, k, 1]
completely (cf. [DK]). Gathering all the terms we obtain a set of generators of
@Dcz[CT2, k, 1], which consists of Hermitian modular forms of weight < 30.

A result of Klingen [KI| says that the field of symmetric Hermitian modular functions
consists of the quotients of two symmetric Hermitian modular forms of the same even
weight. Hence Theorem 4 and 3 as well as Lemma 5 imply

Corollary 11. a) The field H}Y™ of symmetric Hermitian modular functions with respect
to I's is generated by

_#
Eg’

g5
7k

E? Eq _ ¢3F5

= = —= = — d =
P )2 )3 ok Py I3 and s 7

where Y1, P9, P3, P4 are algebraically independent and where 15 satisfies an equation of
degree 3 over C(11,...,14), namely

Y3 — yipo - 92 — cropPehs - ps + 9 = 0

with
P = o3 + c3ips + capihs + csPiv3 + cepivsipa + crpirparhs.

b) The field of Hermitian modular functions with respect to CT'y is an extension of degree
4 over H™ generated by

8
¢6=£, Yoo M =v(M)-s, METa, g0l =,
b = D83 M = MerT I, = —
7 = bo1 7o M =, € Iy, P70 Ity = —17.

6. Theta series
We obtain theta series

(8) 9p(Z) = Y 9" 7 € Hy(C), pe o, Ze Hy(O).
gep+0?
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One has ¥, =9_p = Upyn,h € 0?2, and p+p € O? yields
0p(Z") = 9,(2).

Thus the theta series (8) are symmetric Hermitian modular forms of weight 1 and trivial
character with respect to the principal congruence subgroup

Dy[v/—8]:={M cTy; M=+l mod -8}

The space © spanned by these theta series has the dimension 40 as easily checked by
comparing the Fourier expansions. The theta transformation formula therefore yields a
40-dimensional representation of the group

P/Ta[V8] & PSp,(0/(V=8))
of the order 377,487,360 = 223 - 32 . 5. The Molien series of this representation can be
calculated to be
194 ;

1+ 35,2, dit™
(1 _ t4)3 . (1 _ t6)8 . (1 _ t8)12 . (1 _ t10)4 . (1 _ t12)4 . (1 _ t16)2 . (1 _ t20)4 . (1 _ t24)3’
d; € Ny. Thus the non-zero Hermitian modular forms in [I'y, k,1]°¥™, k odd, cannot be
represented as polynomials in the functions from ©.

Consider the half-space Ha(H) of quaternions of degree 2 (cf. [K1|) and the Hurwitz
order

AN=7+ Zi\ + Ziy + Zw, w:§(1+z1+22+23), 13:1122:—1211,1%:'&%:—1.

Freitag and Hermann [FH|, 10.6 and 12.2, introduced 6 algebraically independent theta
series on Hy(H)

oz e aemn o (L00-0.00)

Setting /—2 = i1 + i3 we obtain an embedding of H9(C) into Ho(H) and of I's into the
modular group of degree 2 over the Hurwitz quaternions (cf. [K3], [FH]). Denote the
restrictions of the theta series (9) onto Ho(C) by 64,602,603, 04, 05,0s. Thus

A=o+wo

yields a representation of each 6; as a homogeneous polynomial of degree 2 in the func-
tions of ®. We have
05 = 64

due to [FH], 11.1, as well as
6; € [Ta[vV—2], 2, 1)*¥™.

Note that
FQ/FQ[\/ —2] & Spg(Z/ZZ) = 3,

the symmetric group in 6 letters. Using MAGMA we now obtain a basis of the invariant
polynomials in 61, ..., 605 by means of the theta transformation formula.
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Theorem 6. There are 5 algebraically independent symmetric Hermitian modular forms
Hy € Do, k,1]5¥™ k = 4,6,8,10,12, which are polynomials in 01,...,05. They are given

Hy = 67+ 3605 +363 4 307 + 662,
Hg = 0,(67 — 903 — 962 — 9607 — 3602) + 54020304,
Hg = (67 —03— 02— 02 +02)02 — 20,0,030, + 0202 + 6202 + 6262,
Hyy = 6:1(07 — 02— 63— 0] +2602) — 20,(6262 + 0262 + 6262)
+6020304 (67 + 363 + 3603 + 365 — 662),
Hip = (2367 — 3605 — 302 — 307 + 6602)07 + (207 + 605 + 603 + 60 + 120,020304)62
—(02 4 62 + 62)(86262 + 180,02030,) + 263020504 + 36026267
Proof. Hy, € [[a,k,1]*¥™ follows from the construction. A calculation of the Fourier
expansions and Igusa’s result [Ig] show that H4‘ Ha(R) Hg ‘ Ha(R)’ Hyg ‘ Ha(R) H 12| Ha(R)

| =0.
H>(R)
This yields the algebraic independence. O

generate the graded ring of Siegel modular forms of even weights and that Hg

We add a few final

Remarks. a) One has Hy = Ey, He = Eg + 255 F3.

b) R is generated by Hy, Hg, Hg, H19, H12 and qS%, ¢3F, F52 One may also replace ¢3F5
by f8|H2(© with fg from [K3].

c) Let 6 = X; -...- X1¢ be the product of the ten theta series in [FH], 10.3. Thus [FH],
11.9, shows that 0 # 0|H2(© € g, 20, 1]%¥™ vanishes on Ho U Hg. Hence Corollary 2b

shows that 0| (©) /#20 is a holomorphic Hermitian modular form of weight 0, i.e.

O‘HQ(C) = - ¢9g for some0 # a € C.

d) We conjecture that any f € [, k, 1]*¥™, k even, is a polynomial in the theta series
(8) as proved for the analogous case Q(y/—3) in [DK]. This looks plausible due to the
Molien series and Theorem 6. In principle a basis of the ring of invariant polynomials of
the above representation can be calculated using MAGMA.

We thank Ingo Klécker for his assistance in the computations.
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