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Abstract

For a complete cartesian-closed category V with coproducts, and for any pointed end-
ofunctor T' of the category of sets satisfying a suitable Beck-Chevalley-type condition, it is
shown that the category of lax reflexive (T, V)-algebras is a quasitopos. This result encom-
passes many known and new examples of quasitopoi.
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0 Introduction

Failure to be cartesian closed is one of the main defects of the category of topological spaces. But
often this defect can be side-stepped by moving temporarily into the quasitopos hull of Top, the
category of pseudotopological (or Choquet) spaces, see for example [11, 14, 7]. A pseudotopology
on a set X is most easily described by a relation r — = between ultrafilters r on X and points
z in X, the only requirement for which is the reflezivity condition z — z for all z € X, with
T denoting the principal ultrafilter on z. In this setting, a topology on X is a pseudotopology
which satisfies the transitivity condition

X-on&p-oz = mX) -z

for all z € X, y € UX (the set of ultrafilters on X) and X € UUX; here the relation —
between UX and X has been naturally extended to a relation between UUX and UX, and
m=mx : UUX — UX is the unique map that gives U together with ex(z) = T the structure
of a monad U = (U, e, m). Barr [2] observed that the two conditions, reflexivity and transitivity,
are precisely the two basic laws of a lax Eilenberg-Moore algebra when one extends the Set-
monad U to a lax monad of Rel(Set), the category of sets with relations as morphisms. In
[9] Barr’s presentation of topological spaces was extended to include Lawvere’s presentation
of metric spaces as V-categories with V. = R, the extended real half-line. Thus, for any
symmetric monoidal category V with coproducts preserved by the tensor product, and for any

Set-monad T that suitably extends from Set-maps to all V-matrices (or “V-relations”, with
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ordinary relations appearing for V. = 2, the two-element chain), the paper [9] develops the
notion of reflexive and transitive (T, V)-algebra, investigates the resulting category Alg(T,V),
and presents many examples, in particular Top = Alg(U, 2).

The purpose of this paper is to show that dropping the transitivity condition leads us to a
quasitopos not only in the case of Top, but rather generally. In order to define just reflexive
(T, V)-algebras, one indeed needs neither the tensor product of V (just the “unit” object) nor
the “multiplication” of the monad T. Positively speaking then, we start off with a category
V with coproducts and a distinguished object I in V and any pointed endofunctor T' of Set
and define the category Alg(7, V). Our main result says that when V is complete and locally
cartesian closed and a certain Beck-Chevalley condition is satisfied, also Alg(7,V) is locally
cartesian closed (Theorem 2.7).

Defining reflexive (T, V)-algebras for the “truncated” data T', V entails a considerable depar-
ture from [9], as it is no longer possible to talk about the bicategory Mat(V') of V-matrices. The
missing tensor product prevents us from being able to introduce the (horizontal) matrix compo-
sition; however, “whiskering” by Set-maps (considered as 1-cells in Mat(V)) is still well-defined
and well-behaved, and this is all that is needed in this paper.

We explain the relevant properties of Mat(V) in Section 1 and define the needed Beck-
Chevalley condition. Briefly, this condition says that the comparison map that “measures” the
extent to which the T-image of a pullback diagram in Set still is a pullback diagram must be a
lax epimorphism when considered a 1-cell in Mat(V). Having presented our main result, at the
end of Section 2 we show that this condition is equivalent to asking 7" to preserve pullbacks or, if
V is thin (i.e., a preordered class), to transform pullbacks into weak pullback diagrams (barring
trivial choices for I and V). In certain cases, (BC) turns out to be even a necessary condition
for local cartesian closedness of Alg(7,V), see 2.10. In Section 3 we show how to construct
limits and colimits in Alg(7, V) in general, and Section 4 presents the construction of partial
map classifiers, leading us to the theorem stated in the Abstract. A list of examples follows in

Section 5.
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1 V-matrices

1.1 Let V be a category with coproducts and a distinguished object I. A V-matriz (or V-
relation) r from a set X to a set Y, denoted by 7 : X - Y, is a functor r : X xY — V,
ie. an X x Y-indexed family (r(z,y))s,y of objects in V. With X, Y fixed, such V-matrices
form the objects of a category Mat(V)(X,Y), the morphisms ¢ : 7 — s of which are natural

transformations, i.e. families (g4 : r(z,y) = s(2,y))z,y of morphisms in V; briefly,

Mat(V)(X,Y) = VXY,



1.2 Every Set-map f: X — Y may be considered as a V-matrix f : X -» Y when one puts

Fay) :{ I if f(z) =y,

0 else,

with 0 denoting a fixed initial object in V. This defines a functor
Set(X,Y) — Mat(V)(X,Y),

of the discrete category Set(X,Y), and the question is: when do we obtain a full embedding,
for all X and Y7 Precisely when

(*) V(1,0) =0 and |V(I,I)| =1,

as one may easily check. In the context of a cartesian-closed category V, we usually pick for I

a terminal object 1 in V, and then condition (*) is equivalently expressed as

(**) 021,
preventing V from being equivalent to the terminal category.

1.3 While in this paper we do not need the horizontal composition of V-matrices in general, we
do need the composites sf and gr for maps f : X - Y, g:Y — Z and V-relations r: X » Y,
s:Y -» Z, defined by

(sf)(z,2) = s(f(z),2),

gr)(@,2) = Y, rixy),
y:9(y)=2

!

for z € X, z € Z; likewise for morphisms ¢ : 7 — 7’ and 9 : s — s’. Hence, we have the

“whiskering” functors
—f:Mat(V)(Y, Z) - Mat(V)(X, 2),

g—: Mat(V)(X,Y) — Mat(V) (X, Z).

The horizontal composition with Set-maps from either side is associative up to coherent isomor-
phisms whenever defined; hence, if h: U — X and k: Z — V, then

(sf)h = s(fh) and k(gr) = (kg)r.

Although Mat(V) falls short of being a bicategory, even a sesquicategory [15], we refer to sets
as 0-cells of Mat(V), V-matrices as its 1-cells, and natural transformations between them as its
2-cells.

1.4 The transpose r°: Y - X of a V-matrix 7 : X - Y is defined by 7°(y,z) = r(z,y) for all
z € X,y €Y. Obviously r°° = r, and with

(sf)° = f°s° (gr)° =r°¢°



we can also introduce whiskering by transposes of Set-maps from either side, also for 2-cells.
A Set-map f: X — Y gives rise to 2-cells

n:lx = f°f, e ff* =1y
satisfying the triangular identities (e f)(fn) = 1, (f°€)(nf°) = 15.

1.5 For a functor 7' : Set — Set, we denote by k : TW — U the comparison map from the
T-image of the pullback W := Z xy X of (g, f) to the pullback U :=TZ xp, TX of (Tg,Tf)

TWK (1)
AN

U TX
Th L ij
Tg
TZ ——=TY.

We say that the Set-functor T satisfies the Beck-Chevalley Condition (BC) if the 1-cell k is a
lax epimorphism; that is, if the “whiskering” functor —x : Mat(V)(TW, S) — Mat(V)(U, S) is
full and faithful, for every set S.

In the next section we will relate this condition with other known formulations of the Beck-

Chevalley condition.
2 Local cartesian closedness of Alg(7,V)

2.1 Let (T,e) be a pointed endofunctor of Set and V category with coproducts and a dis-
tinguished object I. A lax (reflexive) (T,V)-algebra (X,a,n) is given by a set X, a 1l-cell
a:TX -» X and a 2-cell n : 1x — aex in Mat(V). The 2-cell 7 is completely determined by
the V-morphisms

Ne = Nz, - I—>a(eX($)a$)’

xz € X. As we shall not change the notation for this 2-cell, we write (X,a) instead of (X,a,n).
A (lax) homomorphism (f,¢) : (X,a) — (Y,b) of (T, V)-algebras is given by amap f: X - Y
in Set and a 2-cell ¢ : fa — b(Tf) which must preserve the units: (pex)(fn) = nf. The 2-cell

¢ is completely determined by a family of V-morphisms

f;,x : a();, 37) - b(Tf(p),f(:C)),

z € X, r € TX, and preservation of units now reads as fe, (z)zMz = 7() for all z € X. For

simplicity, we write f instead of (f,¢), and when we write

fzc,:c : a’(xax) - b(Uay)

this automatically entails y = T f(r) and y = f(x); these are the V-components of the homomor-
phism f. Composition of (f, ) with (g,%) : (Y,b) — (Z,c) is defined by

(9, 0)(f, ) = (9f, (D(Tf))(g¥))

4



which, in the notation used more frequently, means

(0)em = (ale,2) L2 by, ) 22 (3, 2)).

We obtain the category Alg(7T,V) (denoted by Alg(T,e; V) in [9]).

2.2 Let V be finitely complete. The pullback (W, d) of f : (X,a) — (Z,c) and g : (Y,b) — (Z,¢)
in Alg(T, V) is constructed by the pullback W = X x ;Y in Set and a family of pullback diagrams
in V, as follows:

!
frow

d(tw, w) ——b(n,y)
g(v,wl lgn,y
fre
CI,(;, ‘T) - 0(37 Z)

for all w € W hence,

d(to,w) = a(Tg' (1), g'(w)) x b(Tf'(w), f'(w))

in V, where ¢ : W — X and f' : W — Y are the pullback projections in Set. For each
w = (z,y) in W, we define n,, :=< 13,1, >.

2.3 Every set X carries the discrete (T,V)-structure e5. In fact, the 2-cell n : 1x — e§ex
making (X, e%) a (T, V)-algebra is just the unit of the adjunction ex 4 e% in Mat(V). Now
X — (X, €% ) defines the left adjoint of the forgetful functor

Alg(T, V) —— Set

since every map f : X — Y into a (7, V)-algebra (Y, b) becomes a homomorphism f : (X,e%) —
(Y,b); indeed the needed 2-cell fe — b(Tf) is obtained from the unit 2-cell n : 1 — bey with
the adjunction ex - e%: it is the mate of fn: f = bey f = b(T f)ex. In pointwise notation, for

fra 2 €% (& 2) —=b(n,y)
one has f;, = 17 if ex(x) = r; otherwise its domain is the initial object 0 of V, i.e. it is trivial.

2.4 We consider the discrete structure in particular on a one-element set 1. Then, for every
(T, V)-algebra (X,a), an element z € X can be equivalently considered as a homomorphism

z:(1,e]) — (X,a) whose only non-trivial component is the unit 7, : I — a(ex(z), ).

2.5 Assume V to be complete and locally cartesian closed. For a homomorphism f : (X, a) —
(Y,b) and an additional (7, V)-algebra (Z,c) we form a substructure of the partial product of
the underlying Set-data (see [10]), namely

Z ev

Q—>Xx (2)
f’l f
p-L.vy

bl



with
P = Zf = {(Say) |y € Y7 S (Xyaay) - (Z’C)}a

Q=2 xy X ={(s,2) |z € X, s: (Xy(a),05(2)) = (%, )},
where (X, = f~'y,a,) is the domain of the pullback

iyt (Xy, ay) — (X, a)

of y: (1,e5) — (Y,b) along f. Of course, p and ¢ are projections, and ev is the evaluation map.
We must find a structure d : TP - P which, together with a 2-cell n, will make these maps
morphisms in Alg(T, V).

For (s,y) € P and p € TP, in order to define d(p, (s,y)), consider each pair z € X and
q € TQ with f(z) =y and Tf'(q) = p and form the partial product

ev

c(3,8(x)) == c(3, 5(z)) = xp alr, ) — aly, 7) (3)

T

Dyq,z

c(3, s(x))/re ————b(n,9)

in V, where 3 = Tev(q), and then the multiple pullback d(p, (s,y)) of the morphisms pg, in V,

c(
(s,9))

2.6 We define the 2-cell n : 1p — dep componentwise. Let (s,y) € P and consider each z € X
and q € TQ with f(z) =y and Tf'(q) = ep(s,y) = T(s,y)e; (where (s,y) : 1 — P). Consider
the pullback j, : X, — Q of (s,y) : 1 — P along f’ in Set; whence, j,(z) = s(z). By (BC) there
is r € TX, such that Tj,(r) = q and T!(xr) = e1(x) (where ! : X;, = 1 and * is the only point of

as in:

Slx fP;m

()

b(v,y)-

I

d(p,

Pyp,(s,9)

1). Since evj, = s, we may form the diagram

Sr,x

, (iy)r.e
(3, 8(z)) <—— ay (r,z) —>

a(x, )

I
I—"—b(ey(y),y)

in V, where 3 = Tev(q) = T's(r), and the square is a pullback. The universal property of (3)
guarantees the existence of 7jq ; : I — ¢(3,s(z))/* such that pg z7iqz = 7y and 6vq 4 (fqz Xp 1) =
Sga- Then, with the multiple pullback property, the morphisms 7jq; define jointly ¢ : I —

d(ep(s,y), (s,9))-

2.7 Theorem. If the pointed Set-functor T satisfies (BC) and V is complete and locally carte-

sian closed, then also Alg(T, V) is locally cartesian closed.

Proof. Continuing in the notation of 2.5 and 2.6, we equip @ with the lax algebra structure
r: TQ -» @ that makes the square of diagram (2) a pullback diagram in Alg(7, V). Then the



2-cell defined by

r(a, (5,2) (3, 5(2)) 7 xp alp,7) 5 (3, 5(x))

makes ev : (Q,7) — (Z,¢) a homomorphism.

In order to prove the universal property of the partial product, given any other pair (h :
(L,u) — (Y,b),k : (M,v) = (Z,c)), where M := L Xy X, we consider the map ¢t : L — P,
defined by t(I) := (s, h(l)), with

(Xna) an@y) —= (2, ¢)) = (Xn@y» angy) —2= (M, v) —2> (2, ¢)),

where j; is the pullback of [ : (1,e9) — (L,u) along f": (M,v) — (L,u). We remark that in the

commutative diagram

VA evt’ Q q /X

Z\M/ d Xh(1y il
fl

L/ %)

1

every vertical face of the cube is a pullback in Set.

Now, for each [ € L and | € L we define t(; : u(l,I) — d(Tt(l),t(I)) componentwise. Since
evt' = k we observe that Tk factors through the comparison map « : TM — TL X7pTQ, defined
by the diagram

TM TV

Sk

N
TL XTp TQ

2

TQ
ij’
TL It TP;

that is Tk = (Tev)(Tt') = (Tev)mak. Since also kv factors through k, i.e., kv = kvk, with (BC)
we conclude that the 2-cell kv — ¢(Tk) is of the form

Tfll T

M ul TL XTpP TQ P Z.

(Tev)ma
For each z € X and q € TQ such that f(x) = h(l) and T'f'(q) = Tt(l), let m € TM be such that
(Tf")(m) =land (Tt)(m) = q. In the diagram

kw1,
c(3,s1(z)) =—v(m, (l,x)) —=a(r, 7)

L
hyy

u(l, ) ——b(,y)



in V one has 3 = (Tev)(q) and the morphism ki, ;,) depends only on q and [. Moreover,
the square is a pullback, hence there is a V-morphism #1; : u(l,l) — c(3,s;(z))/*= such that
ﬁq,xﬂ,l = hyy and Ky (g0 (fu Xp 1) = €vq . With the multiple pullback property, the morphisms
tr, define the unique 2-cell that makes ¢ : (L,u) — (P,d) a homomorphism. O

If in the proof we take for (Y,b) the terminal object of Alg(T,V), that is, the pair (1,T)

where the lax structure T is constantly equal to the terminal object of V, we conclude:

2.8 Corollary. If the pointed Set-functor T satisfies (BC) and V is complete and cartesian
closed, then also Alg(T, V) is cartesian closed.

We explain now the strength of our Beck-Chevalley condition.

2.9 Proposition. For T and V as in 1.5, let V(I,0) = 0. Then:

(a) If T satisfies (BC), then T transforms pullbacks into weak pullbacks. The two conditions

are actually equivalent when V is thin (i.e. a preordered class).
(b) If V is not thin, satisfaction of (BC) by T is equivalent to preservation of pullbacks by T

(c) If V is cartesian closed, with I = 1 the terminal object, then T satisfies (BC) if and only
if (Tf)°Tg =Tk(Th)°, for every pullback diagram

W —>x (4)
|l
72>y

in Set.

Proof. (a) Let kK : TW — U be the comparison map of diagram (1). By (BC) the 2-cell
kN : k — KkK°k is the image by —k of a 2-cell ¢ : 1y — kk°. Hence, for each u € U there is
a V-morphism I — kk°(u,u) = Z k(mw,u). Therefore the set {rwv € TW |k(tv) = u}

weTW : k(w)=u
cannot be empty, that is, x is surjective.

If V is thin and & is surjective, there is a (necessarily unique) 2-cell 1y — £k°. Then each

2-cell ¥ : kr — ks induces a 2-cell ¢ : r — s defined by

ro o YK ° se
r'————>7TrKK SKK S

whose image under —x is necessarily .

(b) If T preserves pullbacks, then « is an isomorphism and (BC) holds.

Conversely, let T satisfy (BC) and let k : TW — U be a comparison map as in (1). We
consider wy, 1 € TW with k(wg) = £(w1) and V-morphisms o, 8 : v — v/ with a # £, and
definer : UxU — V by r(u,u') =vand s : UxU — V by s(u,u’) = v'. The 2-cell ¢ : rk — sk,
with ¥y, = a if w =1y and 9y, = B elsewhere, factors through « only if oy = ;.

(c) For any commutative diagram (4) there is a 2-cell kh® — f°g, defined by

kho o
khe — o go ke = foghhe —19 o foq,



which is an identity morphism in case the diagram is a pullback.
If T satisfies (BC) and V is not thin, the equality Tk(Th)° = (T f)°Tg follows from (b). If

V is thin, then in the diagram (1) the 2-cell o : 1 — Kkk° considered in (a) gives rise to a 2-cell

o
207

(Tf)°Tg = mom; ———— makk’ny = Tk(Th)®,
and the equality follows.
Conversely, the equality (7f)°Tg = Tk(Th)° guarantees the surjectivity of x, hence (BC)
follows in case V is thin, by (a). If V is not thin, we first observe that a coproduct ZI is

X
isomorphic to I only if X is a singleton, due to the cartesian closedness of V. Now, (T'f)°Tg =
Tk(Th)° means that, for every 3 € TZ and r € TX with Tg(3) = T f (),

I=Tf(x,Tg(3)) = TfTg(s,x) = TKTh*(3,5) = Y _{I|w € TW : Tk(w) = & Th(w) = 3}.
From this equality we conclude that there exists exactly one such w, i.e. TW =TZ xpy TX. O

2.10 Finally we remark that, in some circumstances, the 2-categorical part of (BC) is essential
for local cartesian-closedness of Alg(7, V). Indeed, if V is extensive [4], T’ transforms pullback
diagrams into weak pullback diagrams and Alg(7, V) is locally cartesian closed, then T satisfies
(BC), as we show next. To check (BC) we consider a 2-cell 9 : r& — sk, with kK : TW — U the
comparison map of diagram (1) and r,s : U — S. We need to check that ¥ = ¢k for a unique

2-cell ¢ : r — s. This 2-cell exists, and it is unique if and only if
Viog, w1 € TW Vs € S k(tog) = k(1) = Prg,s = Yoy, s-

For v := r(k(my), s) and v’ := s(k(mwy), s), and @ := 1y, s and f = 1y, s, we want to show that
a=p.

For that, in the pullback diagram (4) we consider structures a, b, ¢, d, on X, Y, Z and
W respectively, constantly equal to I + v, with 5 : I — I + v the coproduct injection. For d’

constantly equal to I + v', in the diagram

w,d) L w,a) B (xa)

(h,l)l J/(f,l)
(2,¢) 22 (v,p)

we define ¢ by:

) 1+ a  if w =1,
RAE [ elsewhere.

The square is a pullback. Hence the morphism (id,e) factors through the partial product via
t Xy id, with ¢t : Z — P. Since the 2-cell of ¢t Xy id is obtained by a pullback construction and
k(tg) = K(to1), its 2-cell “identifies” 1oy and toi, hence ewgw = €w,,w, that is, 1 + o =1+ 3.
Therefore o = 3, by extensitivity of V.



3 (Co)completeness of the category Alg(7,V)

3.1 We assume V to be complete and cocomplete. The construction of limits in Alg(7,V)
reduces to a combined construction of limits in Set and V, as we show next.
The limit of a functor
F:D — Alg(T,V)
D — (FD,ap)

DL E — (FDap) Y (FE,ap)

is constructed in two steps.

First we consider the composition of F' with the forgetful functor into Set

D

Alg(T,V)

Set, (5)

and construct its limit in Set
P

(L FD)pep.

Then, we define the (7', V)-algebra structure a : TL -+ L, that is the map a : TX x X — V,
pointwise. For every [ € T'L and [ € L, we consider now the functor

F[’l:D -V
D ~ ap(Tp”(1),p" (1))

DLE o ap@pP(1),pP ()

FfrpD (1,00 1)
—_—

an(TpP (1), pP (1))
and its limit in V
(a(t, 1)) — 1 ap (TpP (1), p° (1)) e

This equips p” : (I,a) — (FD,ap) with a 2-cell pPa — apTpP.
By construction

(L,a)

(FD,ap) (6)

is a cone for F'. To check that it is a limit, let

(¥V,b) — L (FD,ap)

be a cone for F. By construction of (L, p"), there exists a map ¢ : Y — L such that p”t = g”
for each D € D. Foreachy € TY and y €Y,

D

b(v,y) ap(TpP(Tt(n)),p" (t(y)))

is a cone for the functor Fiy(y) 4,)- Hence, by construction of a(Tt(y),t(y)), there exists a unique
V-morphism ¢, , making the diagram

D

alTt{y), ) — "~ ap(TpP(TH(v)), pP (H(y)))
ty,y : g&,
b(v,y)

10



commutative. These V-morphisms define pointwise the unique 2-cell gb — p”a.

For each I € L, my : I — a(er(l),1) is the morphism induced by the cone

(UI?D(l),pD(l) : 1 = ap(erp(p”(1)),p" (1)) peD-

3.2 Cocompleteness. To construct the colimit of a functor F' : D — Alg(T, V) we first proceed
analogously to the limit construction. That is, we form the colimit in Set

;D

(FD ‘

Q)peD

of the functor (5).
To construct the structure ¢ : TQ - @, for each q € T'Q) and g € (), we consider the functor
F91:D — V, with

F(D) =Y {ap(r,z) | Ti"(x) = q, i" () = q},

and, for f : D — E, the morphism F94(f): F%9(D) — F%(E) is induced by

ap(e7) 2% ap(TF (), £ () — ¥ {ap(o,y) | Tif () = 4, iP () = q} = FH4(B).

and denote by &(q,q) the colimit of F%%. If q # eg(q) for ¢ € Q, then &(q,q) is in fact the
structure c(q, ¢) on the colimit. For q = eg(g), the multiple pushout

D &(eq(q),q)
GF%

ap(erp(z),x)

>
Ta

I c(eq(q),9),

defines c(eg(q),q), with D € D and z € FD such that iP(z) = q.
4 Representability of partial morphisms

4.1 Let 8 be a pullback-stable class of morphisms of a category C. An S-partial map from X
to Y is a pair ( X =<>— U ——=Y ) where s € §. We say that § has a classifier if there is a
morphism true : 1 — 1 in 8§ such that every morphism in § is, in a unique way, a pullback of
true; C has S-partial map classifiers if, for every Y € C, there is a morphism truey : Y — Y in
§ such that every $-partial map ( X <>— U ——Y ) from X to Y can be uniquely completed

U
|
X

so that the diagram

%Y

l truey

- — >

is a pullback.

11



i From Corollary 4.6 of [10] it follows that:

4.2 Proposition. If § is a pullback-stable class of morphisms in a finitely complete locally

cartesian-closed category C, then the following assertions are equivalent:
(i) 8 has a classifier;

(ii) C has S-partial map classifiers.

4.3 Our goal is to investigate whether the category Alg(7, V) has S-partial map classifiers, for

the class § of extremal monomorphisms. For that we first observe:

4.4 Lemma. An Alg(T,V)-morphism s : (U,c) — (X, a) is an extremal monomorphism if and
only if the map s : U — X is injective and, for each uw € TU and u € U, sy, : c(u,u) = a(r, z)

is an isomorphism in V.

4.5 Proposition. In Alg(T,V) the class of extremal monomorphisms has a classifier.

Proof. For 1 = (141, T), where T is pointwise terminal, we consider the inclusion true : 1 — 1
onto the first summand. For every extremal monomorphism s : (U,¢) — (X,a), we define
xv : (X,a) — 1 with xy : X — 1+ 1 the characteristic map of s(U), and the 2-cell constantly
':a(z,z) — 1. Then the diagram below

(U,s) —=1

A

(X,a) =1,
is a pullback diagram; it is in fact the unique possible diagram that presents s as a pullback of
true. 0

Using Theorem 2.7 and Proposition 4.5, we conclude that:

4.6 Theorem. If the pointed Set-functor T satisfies (BC) and 'V is a complete and cocomplete
locally cartesian closed category, then Alg(T, V) is a quasitopos.

4.7 Remark. Representability of (extremal mono)-partial maps can also be proved directly,
and in this way one obtains a slight improvement of Theorem 4.6: Alg(7,V) is a quasi-topos
whenever T satisfies (BC) and V is a complete and cocomplete cartesian closed category, not

necessarily locally so.

5 Examples.

5.1 We start off with the trivial functor 7" which maps every set to a terminal object 1 of Set.
T preserves pullbacks. Choosing for I the top element of any (complete) lattice V' we obtain
with Alg(T, V) nothing but the topos Set. This shows that local cartesian closedness of V is
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not a necessary condition for local cartesian closedness of Alg(T', V). We also note that T' does
not carry the structure of a monad.

If, for the same T', we choose V = Set, then Alg(T, Set) is the formal coproduct completion
of the category Set, of pointed sets, i.e. Alg(T,Set) = Fam(Set,).

5.2 Let T' = Id, e = id. Considering for V as in [9] the two-element chain 2, the extended
half-line R, = [0, 0o] (with the natural order reversed), and the category Set, one obtains with
Alg(T, V) the category of

— sets with a reflexive relation
— sets with a fuzzy reflexive relation
— reflexive directed graphs,

respectively.
More generally, if we let TX = X™ for a non-negative integer n, with the same choices for

V one obtains
— sets with a reflexive (n + 1)-ary relation
— sets with a fuzzy reflexive (n + 1)-ary relation

— reflexive directed “multigraphs” given by sets of vertices and of edges, with an edge having
an ordered n-tuple of vertices as its source and a single edge as its target; reflexivity means

that there is a distinguished edge (z,---,z) — x for each vertex z.

Note that the case n = 0 encompasses Example 5.1.
5.3 For a fixed monoid M, let T belong to the monad T arising from the adjunction
SetM L. Seta

ie. TX = M x X with ex(z) = (0,z), with 0 neutral in M (writing the composition in M
additively). T preserves pullbacks. The quasitopos Alg(T,Set) may be described as follows.
Its objects are “M-normed reflexive graphs”, given by a set X of vertices and sets a(z,y) of
edges from z to y which come with a “norm” v,y : a(z,y) = M for all z,y € X; there is a
distinguished edge 1, : z — = with vy 4(1;) = 0. Morphisms must preserve the norm. Of course,
for trivial M we are back to directed graphs as in 5.2.

It is interesting to note that if one forms Alg(T, Set) for the (untruncted) monad T (see [9]),
then Alg(T, Set) is precisely the comma category Cat/M, where M is considered a one-object
category; its objects are categories which come with a norm function v for morphisms satisfying

v(gf) = v(g) + v(f) for composable morphisms f, g.

5.4 Let T = U be the ultrafilter functor, as mentioned in the Introduction. U transforms pull-
backs into weak pullback diagrams. Hence, for V = 2 we obtain with Alg(T,2) the quasitopos
of pseudotopological spaces, and for V. = R, the quasitopos of (what should be called) quasi-

approach spaces (see [9, 8]). If we choose for V the extensive category Set, then the resulting
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category Alg(U, Set) is a rather naturally defined supercategory of the category of ultracategories
(as defined in [9]) but fails to be locally cartesian closed, according to 2.9(b) and 2.10.
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