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Abstract

It is well known that the morphisms between varieties of algebras
(as objects) induced by morphisms of algebraic theories are precisely
the algebraically exact functors, and they can be completely charac-
terized as the finitary, continuous and exact functors. We prove that
this characterization extends to morphisms between algebraically ex-
act categories (forming an “equational hull” of the category of all vari-
eties). And among categories with finite coproducts, the algebraically
exact ones are proved to be precisely the precontinuous completely
exact categories.

I. Introduction

It is well-known that varieties of (finitary, many-sorted) algebras, considered
as categories, enjoy a number of “exactness” properties relating limits and
colimits. In particular:

(i) filtered colimits commute with finite limits,
(ii) filtered colimits distribute over products (see 1.4 below),
(iii) regular epimorphisms are closed under product
and

(iv) exactness: regular epimorphisms are stable under pullback, and every
equivalence relation is effective (i.e., is a kernel of some morphism).
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It is our conjecture that these are all the exactness properties, i.e., every
other relationship between limits and colimits in all varieties follows from
(i)-(iv) (and from general properties of limits and colimits in categories). We
have proved this in [ARV] for all categories with a small regular generator.
In the present paper this is proved for all categories with finite coproducts.
A reader acquainted with [ARV] can skip the rest of the Introduction until
[.6 where we explain our new result concerning functors preserving exactness
properties.

I.1 The 2-Category of Varieties. A duality between (finitary, many-
sorted) varieties of algebras and algebraic theories, described by F. W. Law-
vere and the present authors in [ALR;], leads to the following 2-category
VAR of

e objects: all varieties,
e morphisms: all functors which are

(i) continuous (i.e., preserve limits),

(ii) finitary (i.e., preserve filtered colimits)

and

(iii) exact (i.e., preserve regular epimorphisms)
e 2-cells: all natural transformations.

Recall that, under (i), (iii) is equivalent to preservation of coequalizers of
equivalence relations. Later we have shown in [ALR,] that

“algebra is not algebraic”
in the sense that the (non-full) inclusion
VAR — CAT  (the 2-category of all categories)

is not pseudomonadic. And we have described an equational hull of VAR.
Before we recall this hull, we need the following concept:

1.2 Sifted Colimits. Recall that the classical concept of a filtered category
can be characterized as follows: a small category D is filtered iff D-colimits
commute with finite limits in Set. In [AR] we have introduced the concept
of a sifted category: a small category D is sifted if D-colimits commute with
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finite products in Set. (Earlier, Lair [L]| has called a category “tamisant”
if colimits over it commute with nonempty finite products in Set, and he
has characterized these categories.) Colimits of diagrams with small sifted
domains are called sifted colimits. Besides filtered colimits, also reflexive
coequalizers are an important example of sifted colimits. Recall that a par-
allel pair fi,fo : A — B is called reflexive if there is d : B — A with
fid = fod = idp, and coequalizers of such pairs are called reflexive coequal-
12€rs.

Analogously to the famous free completion Ind.A of a category A under
filtered colimits of Grothendieck, we have introduced in [AR] a free comple-
tion Sind.A of A under sifted colimits. For more on Sind see I1.1 below.

1.3 Algebraically Exact Categories. A category A with sifted colimits
is always endowed with an (essentially unique) functor

C:SindA— A

of computation of sifted colimits in A. In [ALRy] we call A algebraically
eract provided that it has limits and sifted colimits, and C is continuous.
For example, every variety is algebraically exact, and so is Sind.A for every
complete category A.

A functor between algebraically exact categories is called algebraically
exact if it preserves limits and sifted colimits. We obtain a 2-category ALG
of all algebraically exact categories, algebraically exact functors, and natural
transformations.

We have proved in [ALRy] that ALG is an equational hull of VAR. How-
ever, the definition of algebraic exactness is somewhat unsatisfactory: what
does it mean in “classical” categorical terms? Before dealing with this (still
partially open) question, let us recall an analogous result, formulating a com-
plete answer in case varieties are generalized to the locally finitely presentable
categories of Gabriel and Ulmer [GU]:

1.4 Equational Hull of LFP. The “right morphisms” between locally
finitely presentable categories, as follows from the Gabriel-Ulmer duality
[GU], are the continuous and finitary functors. We denote by LFP the 2-
category of all locally finitely presentable categories, all continuous and fini-
tary functors, and all natural transformations. This 2-category also fails to
be equational, see [ALR3| where its equational hull has been described as
follows:

For every category A with filtered colimits we denote by C' : Ind A — A
the functor of computation of filtered colimits in A. We call A precontinuous
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provided that it has limits and filtered colimits, and C is continuous. Thus,
all varieties (in fact, all algebraically exact categories) are precontinuous;
also all quasivarieties are precontinuous. Fortunately, precontinuity has been
translated into “classical” terms in [ARV]. There we have proved that a
category A with limits and filtered colimits is precontinuous iff its filtered
colimits

(a) commute with finite limits
and

(b) distribute over products. That is given a small collection D; : D; — A
(1 € I) of filtered diagrams, then the following filtered diagram

D:HD,-—)A, (d;) HHDidi
el

has a colimit canonically isomorphic to [] colim D;
iel
Now the 2-category PREC of all precontinuous categories, all continuous
and finitary functors, and all natural transformations is an equational hull

of LFP, as proved in [ALR;]. This implies that all the exactness properties
of locally finitely presentable categories are consequences (a) and (b) above.

1.5 Complete Exactness. Recall from [Bs] that a category A is called
eract provided that

(i) it has finite limits,

(ii) it has regular factorization, i.e., every morphism factors as a regular
epimorphism followed by a monomorphism,

(iii) regular epimorphisms stable under pullback
and

(iv) equivalence relations are effective.
Here we are going to use a stronger condition:

Definition. A category is called completely exact provided that it is complete
and exact and a product [[e; : [[ Ai = ][] B; of regular epimorphism e; :
A; — B; (i €1) is always a regular epimorphism.

Example. Every variety is completely exact (and precontinuous). More
generally, every algebraically exact category has these two properties.
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Open problem. Is every precontinuous, completely exact category alge-
braically exact?

Theorem. ([ARV]) If a category A has a regular generator, then the follow-
ing conditions are equivalent:

(i) A is algebraically ezact,

(ii) A is a complete localization of a variety, i.e., a reflective subcategory
of a variety such that the reflector functor is continuous,

and
(iii) A is precontinuous and completely exact.

Remark. Categories satisfying (ii) above are obviously cocomplete. One of
the results of our paper is the proof of the equivalence of (i) and (iii) for a
much wides class of categories: all categories with finite coproducts.

1.6 Algebraically Exact Functors. As we have mentioned in 1.1, “mor-
phisms between varieties” are precisely the continuous, finitary and exact
functors. Or, equivalently, precisely the algebraically exact functors. The
first result of our paper is an analogous characterization of morphisms of the
category ALG: we prove that a functor between algebraically exact categories
is algebraically exact iff it is continuous, finitary, and exact.

II. Algebraically Exact Functors

11.1 Completions Ind and Sind. What is the relationship between Grothendieck’s
completion Ind under filtered colimits and the above completion Sind under

sifted colimits? A precise answer can be given for all categories C which have

either finite coproducts or limits:

Sind C = Ind (Rec C)

where RecC is a free completion under reflexive coequalizers. More precisely,

we denote below by
n°:C — Sind C

and
n®:C — RecC
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free completions of C under sifted colimits and reflexive coequalizers, respec-
tively. And by
n" : Rec C — Ind (Rec C)

a free completion of Rec C under filtered colimits.

I1.2 Theorem. [(AR), 2.8, [ARV] 5.1] IfC has finite coproducts or is com-
plete, then Ind(Rec C) is a free completion of C under sifted colimits w.r.t.
the universal arrow

n'-n%:C — Ind (Rec C).

I1.3 Remark. This result does not hold for general categories C, a counter-
example is shown in [AR], 2.3 (4).

A precise relationship between sifted colimits and the combination of
filtered colimits and reflexive coequalizers is not known. In particular, we
have the following

I1.4 Open problem. Does every category with filtered colimits and re-
flexive coequalizers have sifted colimits?

The answer is affirmative whenever the category has finite coproducts —
then the existence of filtered colimits implies that coproducts exist. And then
the category is cocomplete: the well-known procedure of computing colimits
via coproducts and coequalizers, see [M], uses in fact reflexive coequalizers.

I1.5 Equivalence Relations. Recall from [B,] that in an exact category C
a relation on an object C' is a subobject of C' x C' represented by a monomor-
phism r: R>—=C x C, or, equivalently, by a monomorphic pair of mor-
phisms r{,79 : R — C. The pair r9,7 : R — C represents the inverse
relation, r—!. A composite of r with a relation s: S ~—=C x C is given by
forming the pullback P of 7, and s;:

P
N
/R S\
d & % A
C C C

And factoring (rip1, rap2) : P — C x C as a regular epimorphism followed by
a subobject of C' x C — that subobject, then, represents the composite r o s.
A relation r is called
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(i) reflexive if it contains the diagonal of C x C,

(ii) symmetric if it contains r*

and
(iii) transitive if it contains r o r.

Relations satisfying (i)-(iii) are called equivalence relations.

Assuming that C has colimits of w-chains which commute with finite
limits, every reflexive relation r has an equivalence hull, the least equivalence
relation 7 containing r, which we now describe. Define an w-chain

Ry R, Ry

CxC

of relations by induction as follows:
ro=ror "

Tn4l1 =Tnp OTy

Factor colimry, : colim R,, — C' x C as a regular epimorphism followed by a
subobject 7: R — C x C. It has been proved by M. Barr [B;] that

(i) 7 is an equivalence relation containing r,
and

(ii) the parallel pairs 7,75 : R — C and 71,75 : R — C are coequalized by
the same morphisms of C.

In particular, if C has coequalizers of equivalence relations, then it has re-
flexive coequalizers.

I1.6 Theorem. A functor between algebraically exact categories is alge-
braically exact iff it is continuous, finitary, and ezract.

Proof. Every algebraically exact functor obviously has all the three prop-
erties. Let F' : A — B be a continuous, finitary, exact functor between
algebraically exact categories. We prove below that F' preserves reflexive
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coequalizers. From this, we derive the algebraic exactness of F' as follows:
since A is algebraically exact, the functor

C:SindA— A

characterized by preserving sifted colimits and fulfilling Cn= Fd 4, is con-
tinuous. Let
F':Sind A — B
be the essentially unique functor preserving sifted colimits with F = F'pS.
Then

F'=2FC: SindA— B.

In fact, recall from II.1 that Sind A = Ind Rec A. Both sides of F' = F'C are
functors extending F"
F'p® 2 F = (FC)n*,

and both sides preserve reflexive coequalizers and filtered colimits; conse-
quently, the two sides are naturally isomorphic.
For every sifted diagram D in A we thus have natural isomorphisms

colim(F D) = colim(F'n°D)
&~ F' colim(n® D)
=~ FC colim(n° D)
=~ F(colim Cn° D)
= F colim D

We prove that F' preserves reflexive coequalizers. In fact, let fi, fo :
A — B be a reflexive pair. Factor (fi, fo) : A — B x B into a regular
epimorphism e : A — R followed by a monomorphism r : R — B x B (since
A is exact, it has regular factorizations). Then r is a reflexive relation on
the object B and its components have the same coequalizer as f; and f.
Since F' is exact, it preserves regular factorizations. Thus, F'r is a binary
relation on F'B whose components have the same coequalizer as F'f; and
F'fy. Consequently, it is sufficient to prove that F' preserves coequalizers of
reflexive relations. First observe that F', preserving finite limits and regular
factorizations, preserves the calculus of relations: if r : R — B X B represents
a relation on B then Fr : FR — F'B x FB represents a relation on F'B,
and F' preserves relation inverses and composition of relations. We know
that F' preserves coequalizers of equivalence relations. We conclude that it
preserves coequalizers of reflexive relations, r, by forming the hull 7 asin II.1
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and observing that the functor F' preserves the operations r +— 7 on reflexive
relations:

Fro= (Fr)o (Fr)™,
Frn-i-l = (F’I‘n) 0 (FTn) )

and

F7 = colim(Fr,) = Fr.
ncw
Consequently, F'r and F7 have the same coequalizer. Thus, since F' preserves
coequalizers of equivalence relations, it preserves the coequalizer of r. O

I1I. Algebraically Exact Categories

I11.1 Theorem. A category with finite coproducts is algebraically exact iff
it 1s completely exact and precontinuous.

Proof. Let C be a completely exact, precontinuous category with finite co-
products. Then the embedding

5. 0" 7' o
n° : C — RecC — Ind(RecC) = SindC

(cf. 11.2) preserves finite coproducts because n® has this property and n’
preserves all finite colimits. Hence SindC has all coproducts of objects 7°(X)
where X is in C (because coproducts are filtered colimits of finite coproducts).
Since objects n°(X), X in C, are regularly projective in SindC, all their
coproducts are regularly projective too. Moreover, every object in SindC is a
small colimit of objects from 7°(C) and thus a regular quotient of coproducts
of objects from 7n°(C). Therefore SindC has enough regularly projective
objects and, moreover, every regularly projective object in SindC is a retract
of a coproduct of objects from 7°(C). Let C be the full subcategory of SindC
consisting of all regularly projective objects. Since SindC is exact, we have
that

is the exact completion of C (following [CV] Theorem 16).
We are to prove that the functor

C:SindC —C
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preserves limits. Following [ARV] 5.3, it suffices to show that it preserves
finite limits, which, following [CV] Theorem 29, is equivalent to the fact that
the domain restriction
c:C—=¢C
of C is left covering, i.e., for every finite diagram D in C and every weak limit
L of D in C the factorizing morphism L — lim C'D is a regular epimorphism.
Let D : D — C be a finite diagram and

lg: L — Dd (dED)

be a limit of D in SindC. Since C = IndC, L belongs to IndC and, due to
precontinuity of C,
C(L) =1limCD.

Since every weak limit of D in C is given by a regularly projective cover

e: X =L

(i.e., lq - e is the corresponding weak limit cone) and C preserves regular
epimorphisms, the canonical morphism

C(e): C(X) - limCD
is a regular epimorphism. Hence C is left covering. 0
I11.2 Remark. As mentioned in the Introduction, we do not know whether
Theorem II.5 holds without the assumption of finite coproducts. In any
case let us observe that an algebraically exact category does not have finite
coproducts, in general. For example, consider the ordered class C obtained
from Ord°® (the transfinite chain of all ordinals ordered dually to the usual

well-order) by adding three new elements L, the smallest element of C, and
uncomparable elements a, b which are lower bounds of all ordinals:

0
1

2

a 5 b
N/
L

Then a coproduct of a, b does not exist, but C is easily seen to the alge-
braically exact.
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