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Abstract

We give a new proof of the fact that the Maaß space is invariant under all Hecke
operators. It is based on the characterization of the Maaß space by a symmetry
relation and certain commutation relations of the Hecke algebra for the Jacobi
group.
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1 Introduction

The Maaß space, a special subspace of the space of Siegel modular forms
of weight k with respect to the Siegel modular group Γ2 is invariant with
respect to all Hecke operators. This has been proven by Andrianov [A1] (cf.
[EZ]). A Siegel modular form f belongs to the Maaß space if and only if the
Fourier coefficients satisfy the so-called Maaß relations.

The proof by Andrianov is quite explicit. Andrianov calculates the action
of the Hecke operators on the Fourier coefficients and finally shows that these
new coefficients also satisfy the Maaß relations [M].

In this note we give a new proof based on additive symmetry proper-
ties of the Maaß space. We note that Borcherds products [B] can also be
characterized by the analogous multiplicative symmetry properties [HM2].
We note that our proof has the potential to be transferred to Borcherds
products. Consider the embedding

j : SL2(R)× SL2(R) ↪→ Sp2(R)

((
a b
c d

)
,

(
a′ b′

c′ d′

))
7→


a 0 b 0
0 a′ 0 b′

c 0 d 0
0 c′ 0 d′

 .

Let
M(n) := {M ∈ Z2×2; detM = n}

and

M∗ :=
1√
n
·M for M ∈M(n).

Here Γ = SL2(Z) =M(1).
Let f be a Siegel modular form and |

k

the Petersson slash operator. Then

we put for the identity matrix I

f |
k

T ↑Σ(n) : =
∑

M :Γ\M(n)

f |
k

j(M∗, I2),(1)

f |
k

T ↓Σ(n) : =
∑

M :Γ\M(n)

f |
k

j(I2,M
∗).(2)

Simply exchanging the Σ-symbol by the Π-symbol leads to the operators
T ↑Π(n) and T ↓Π(n).
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Theorem 1. Let f be a Siegel modular form of degree 2 and weight k.

a) Then f belongs to the Maaß space if and only if

f |
k

T ↑Σ(n) = f |
k

T ↓Σ(n) for all n ∈ CΣ = N.(3)

b) Then f is a Borcherds product if and only if there exists ε(n, f) = ±1
such that

f |
k

T ↑Π(n) = ε(n, f) · f |
k

T ↓Π(n) for all n ∈ CΠ = N.(4)

Remark. a) Theorem 1 a) has been discovered and proven in [H2] and gen-
eralized to automorphic forms on the orthogonal group O(2, n) of signature
(2, n) in [HM1]. It is easy to see that the set CΣ can be chosen to be equal
to the set P of all prime numbers.

b) Variants of this results are given by Pitale and Schmidt [PS] and Heim
[H3]. Hence it suffices if CΣ consists of almost all primes. Applying Weis-
sauer’s results on the generalized Ramanujan-Petersson conjecture leads to
CΣ = {p} for any chosen prime number p (cf. [RS], [FPRS]).

The symmetric equation (3) has many interesting applications, but also
the disadvantage that the involved operators are not really fitting in known
setting of Hecke operators.

Surprisingly, breaking the symmetry by just applying the slash operator
to diag (1,

√
p, 1, 1/

√
p) in (3) makes it possible to give an interpretation in

the frame of the Hecke algebra HJ2 , the Hecke algebra of the Jacobi group
inside Γ2, i.e. Klingen parabolic subgroup of Γ2. Then we consider a well-
known embedding of the Hecke algebra of Γ2 into the Hecke algebra related
to the Jacobi group. Now a commutation relation in the latter Hecke algebra
yields the Hecke invariance of the Maaß space. A similar approach may apply
to Borcherds products.

2 Notation

The spaceMk(Γ2) of Siegel modular forms of degree 2 and weight k consists
of all holomorphic functions f : H2 → C satisfying

f(Z) = f |
k

M(Z) := det(CZ +D)−kf
(
(AZ +B)(CZ +D)−1

)
for all Z in the Siegel half-space

H2 := {Z = X + iY ∈ C2×2; Z = Ztr, Y > 0}, Z =

(
τ z
z τ̃

)
,
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and M =
(
A B
C D

)
in the Siegel modular group

Γ2 :=
{
M ∈ Z4×4; M trJM = J

}
, J =

(
0 −I
I 0

)
, I = I2 =

(
1 0
0 1

)
.

Each such f possesses a Fourier expansion of the form

f(Z) =
∑

T=

(
n r/2
r/2 m

)
≥0

αf (T )e2πi trace (TZ).

The Maaß space M∗k(Γ2) consists of all f ∈Mk(Γ2) satisfying

αf

(
n r/2
r/2 m

)
=

∑
d|gcd(n,r,m)

dk−1αf

(
nm/d2 r/2d
r/2d 1

)

for all
(

n r/2
r/2 m

)
6= ( 0 0

0 0 ). Now use (3) for a prime p. It was proved in [H2],

[HM1] that f ∈Mk(Γ2) belongs to the Maaß space if and only if

pk/2 · f
(
pτ

√
pz√

pz τ̃

)
+ p−k/2 ·

∑
a mod p

f

(
(τ + a)/p

√
pz√

pz τ̃

)

= pk/2 · f
(

τ
√
pz√

pz pτ̃

)
+ p−k/2 ·

∑
a mod p

f

(
τ

√
pz√

pz (τ̃ + a)/p

)(5)

for all primes p and all Z ∈ H2 (cf. Theorem 1 and Remark 1). Note that
(5) is equivalent to

pk−1 · αf
(
n/p r/2p
r/2p m

)
+ αf

(
np r/2
r/2 m

)
= pk−1 · αf

(
n r/2p

r/2p m/p

)
+ αf

(
n r/2
r/2 mp

)
for all

(
n r/2
r/2 m

)
,

whenever the Fourier coefficient is 0 if the matrix is not half-integral.

3 Embedding of Hecke algebras

Denote by

M2 := {M ∈ Z4×4; M trJM = νJ for some ν ∈ N}
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the monoid of integral symplectic similitudes and by

H2 = H(Γ2,M2)

the associated Hecke algebra (cf. [A2], [F], [K]). Let

ΓJ2 : =

{
M =

(
∗ ∗ ∗ ∗
0 0 0 1

)
∈ Γ2

}
,

MJ
2 : =

{
M =

(
∗ ∗ ∗ ∗
0 0 0 r

)
∈M2; r ∈ N

}
,

stand for the associated Jacobi group inside Γ2 resp. Jacobi monoid and by

HJ2 := H(ΓJ2 ,MJ
2 )

the associated Jacobi-Hecke algebra. In view of

ΓJ2 ⊂ Γ2, M2 ⊂ Γ2 · MJ
2 and Γ2 ∩MJ

2 · (MJ
2 )−1 ⊂ ΓJ2

the mapping ∑
M :Γ2\M2

t(Γ2M)Γ2M 7→
∑

M :ΓJ
2 \MJ

2

t(Γ2M)ΓJ2M

induces an injective homomorphism of the Hecke algebras

ι : H2 → HJ2

(cf. [A2], Proposition 3.1.6, [K], I(6.4)).
We calculate the image for well-known generators of H2. Therefore let

5(p) :=
∑

a mod p

ΓJ2


p 0 0 0
0 p 0 a
0 0 p 0
0 0 0 p

ΓJ2 .

Lemma. Given a prime p one has

ι(Γ2 diag (1, 1, p, p)Γ2) = ΓJ2 diag (1, 1, p, p)ΓJ2 + ΓJ2 diag (1, p, p, 1)ΓJ2 ,

ι(Γ2(pI4)Γ2) = ΓJ2 (pI4)ΓJ2 ,

ι(Γ2 diag (1, p, p2, p)Γ2) = ΓJ2 diag (p, p2, p, 1)ΓJ2 + ΓJ2 diag (p, 1, p, p2)ΓJ2

+ ΓJ2 diag (1, p, p2, p)ΓJ2 +5(p)− ΓJ2 (pI4)ΓJ2 .
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Proof. (cf. [H1] or [GN]) A straightforward calculation leads to the following
right coset decompositions

ΓJ2 diag (1, 1, p, p)ΓJ2 =
•⋃

b,c mod p

ΓJ2


p 0 0 0
−c 1 0 b

1 c
0 p

 ∪ •⋃
S∈Sym (2;Z)
S mod p

ΓJ2

(
I S
0 pI

)
,

ΓJ2 diag (1, p, p, 1)ΓJ2 = ΓJ2 diag (p, p, 1, 1) ∪
•⋃

b mod p

ΓJ2


1 0 b 0
0 p 0 0

p 0
0 1

 .

The representatives on the right hand side are also representatives of
Γ2\Γ2 diag (1, 1, p, p)Γ2.

Finally observe that

ΓJ2 diag (1, p, p2, p)ΓJ2

=

•⋃
a mod p2

ΓJ2


1 0 a 0
0 p 0 0

p2 0
0 p

 ∪ •⋃
c mod p

ΓJ2


p2 0 0 0
−pc p 0 0

1 c
0 p



∪
•⋃

b,c mod p
b 6≡ 0 mod p

ΓJ2


p 0 b bc
0 p bc bc2

p 0
0 p

 ,

ΓJ2 diag (p, 1, p, p2)ΓJ2 =
•⋃

a,c mod p
b mod p2

ΓJ2


p 0 0 pa
−c 1 0 b

p pc
0 p2

 ,

ΓJ2 diag (p, p2, p, 1)ΓJ2 = ΓJ2 diag (p, p2, p, 1),

ΓJ2


p 0 0 0
0 p 0 a

p 0
0 p

ΓJ2 = ΓJ2


p 0 0 0
0 p 0 a

p 0
0 p

 , a ∈ Z.

Then the claim follows as above.
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4 Hecke operators

We introduce Hecke operators on Siegel modular forms f ∈ Mk(Γ2) of
degree 2 and weight k for a subgroup Γ of Γ2 just as in [F] without any
additional factors:

f |
k

ΓMΓ :=
∑

N :Γ\ΓMΓ

f |
k

N, M ∈M2.

Theorem 2. Given f ∈Mk(Γ2) the following assertions are equivalent:

(i) f ∈M∗k(Γ2).

(ii) For almost all primes p one has

f |
k

ΓJ2 diag (1, p, p, 1)ΓJ2 = pk · f |
k

ΓJ2 diag (p, p2, p, 1)ΓJ2 + pk · f |
k

5(p).

(iii) There is a prime p satisfying

f |
k

ΓJ2 diag (1, p, p, 1)ΓJ2 = pk · f |
k

ΓJ2 diag (p, p2, p, 1)ΓJ2 + pk · f |
k

5(p).

Proof. Note that

Z 7→
(

1 0
0
√
p

)
Z

(
1 0
0
√
p

)
=

(
τ

√
pz√

pz pτ̃

)
(6)

is a bijection of H2. Now we apply (5) to the latter matrices instead of Z.
Thus (5) becomes equivalent to

f |
k


p 0 0 0
0 p 0 0

1 0
0 1

+
∑

a mod p

f |
k


1 0 a 0
0 p 0 0

p 0
0 1



= pk · f |
k


p 0 0 0
0 p2 0 0

p 0
0 1

+ pk ·
∑

a mod p

f |
k


p 0 0 0
0 p 0 a

p 0
0 p

 .

Now insert the right coset decompositions of the ΓJ2 double cosets from the
proof of the Lemma. Thus (ii) is equivalent with (5). Note that (ii) and (iii)
become equivalent due to [FPRS]. The simpler equivalence of (i) and (ii)
was already proved in [H3], [PS].
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The mapping (6) destroys the symmetry in the p-Hecke relations. But
this step allows us to interprete (5) as an identity among Hecke operators
with respect to ΓJ2 . It is remarkable that on the other hand the bijection

Z 7→
(√

p 0
0 1

)
Z

(√
p 0

0 1

)
does not allow us to write (5) in terms of Hecke operators for ΓJ2 .

The embedding ι in the Lemma says that for f ∈Mk(Γ2)

f |
k

Γ2 diag (1, 1, p, p)Γ2 = f |
k

ΓJ2 diag (1, 1, p, p)ΓJ2 + f |
k

ΓJ2 diag (1, p, p, 1)ΓJ2

etc. In order to derive the invariance of the Maaß space under all Hecke
operators it suffices to consider the standard generators and their embed-
ding into HJ2 . We quote [H1], Proposition 3.4, resp. [GN] or use a direct
computation of the products according to the decompositions in the proof
of the Lemma:

The elements in the Hecke algebra HJ2

ΓJ2 diag (1, 1, p, p)ΓJ2 , ΓJ2 diag (1, p, p, 1)ΓJ2 , ΓJ2 diag (1, p, p2, p)ΓJ2 ,

ΓJ2 diag (p, 1, p, p2)ΓJ2 , ΓJ2 diag (p, p2, p, 1)ΓJ2 , ΓJ2 (pI4)ΓJ2 , 5(p)

for a fixed prime p commute with all these elements for any prime q, q 6= p.
Note that HJ2 is not commutative and that a corresponding result does

not hold for q = p. Thus the restriction to a almost all primes p in Theorem
2 is crucial for the new proof of the

Corollary 1. The Maaß space M∗k(Γ2) is invariant under all Hecke opera-
tors from H2.

Proof. Apply Theorem 1 and the Lemma.

In his original proof Andrianov [A1] calculated the effect of the Hecke
operators on the Fourier coefficients explicitly. As we are working with
ΓJ2 it is possible to derive the action on the Fourier-Jacobi expansion of
f ∈M∗k(Γ2) explicitly just as pointed out in [GN].

5 Borcherds products

It was proved in [HM2] that the multiplicative version of (5) characterizes
Borcherds products in Mk(Γ2). If we introduce the multiplicative Hecke
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operator for f ∈Mk(Γ2) and a subgroup Γ of Γ2 by

f u
k

ΓMΓ :=
∏

N :Γ\ΓMΓ

f |
k

N ∈M`k(Γ2), ` := ](Γ\ΓMΓ),

the same arguments yield

Corollary 2. Given f ∈Mk(Γ2) the following assertions are equivalent:

(i) f is a Borcherds product.

(ii) For all primes p there exists an ε(p, f) = ±1 such that

f u
k

ΓJ2 diag (1, p, p, 1)ΓJ2 = ε(p, f) · p(p+1)kf u
k

ΓJ2 diag (p, p2, p, 1)ΓJ2

·
∏

a mod p

f u
k

ΓJ2


p 0 0 0
0 p 0 a

p 0
0 p

ΓJ2 .
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